Suppr超能文献

一种通用的添加剂设计策略,用于调节溶剂化结构和氢键网络,以实现低温全铁液流电池中高度可逆的铁阳极。

A Universal Additive Design Strategy to Modulate Solvation Structure and Hydrogen Bond Network toward Highly Reversible Fe Anode for Low-Temperature All-Iron Flow Batteries.

作者信息

Yang Jing, Yan Hui, Zhang Qi-An, Song Yuanfang, Li Ying, Tang Ao

机构信息

Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110000, P. R. China.

School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110000, P. R. China.

出版信息

Small. 2024 Feb;20(8):e2307354. doi: 10.1002/smll.202307354. Epub 2023 Oct 11.

Abstract

Aqueous all-iron redox flow batteries (RFBs) are promising competitors for next-generation grid-scale energy storage applications. However, the high-performance operation of all-iron RFBs in a wider temperature range is greatly hindered by inferior iron plating/stripping reaction and low solid-liquid transition temperature at Fe anode. Herein, a universal electrolyte additive design strategy for all-iron RFBs is reported, which realizes a highly reversible and dendrite-free Fe anode at low temperatures. Quantum chemistry calculations first screen several organic molecules with oxygen-containing functional groups and identify N,N-Dimethylacetmide (DMAc) as a potential candidate with low cost, high solubility, and strong interactions with Fe and H O. Combined experimental characterizations and theoretical calculations subsequently demonstrate that adding DMAc into the FeCl solution effectively reshapes the primary solvation shell of Fe via the Fe -O (DMAc) bond and breaks hydrogen-bonding network of water through intensified H-bond interaction between DMAc and H O, thereby affording the Fe anode with enhanced Fe/Fe reversibility and lower freezing point. Consequently, the assembled all-iron RFB achieves an excellent combination of high power density (25 mW cm ), long charge-discharge cycling stability (95.59% capacity retention in 103 h), and preeminent battery efficiency at -20 °C (95% coulombic efficiency), which promise a future for wider temperature range operation of all-iron RFBs.

摘要

水系全铁氧化还原液流电池(RFBs)是下一代电网规模储能应用中很有竞争力的候选者。然而,全铁RFBs在更宽温度范围内的高性能运行受到铁电镀/剥离反应较差以及铁阳极处低固液转变温度的极大阻碍。在此,报道了一种用于全铁RFBs的通用电解质添加剂设计策略,该策略在低温下实现了高度可逆且无枝晶的铁阳极。量子化学计算首先筛选了几种含氧基官能团的有机分子,并确定N,N - 二甲基乙酰胺(DMAc)是一种潜在候选物,其成本低、溶解度高且与铁和水有强相互作用。随后,结合实验表征和理论计算表明,将DMAc添加到FeCl溶液中可通过Fe - O(DMAc)键有效地重塑铁的初级溶剂化壳,并通过DMAc与水之间增强的氢键相互作用破坏水的氢键网络,从而使铁阳极具有增强的Fe/Fe可逆性和更低的冰点。因此,组装的全铁RFB在-20°C下实现了高功率密度(25 mW cm)、长充放电循环稳定性(103小时内容量保持率为95.59%)和卓越的电池效率(95%库仑效率)的出色组合,这为全铁RFBs在更宽温度范围内运行带来了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验