Suppr超能文献

计算反应扩散系统的所有持久子空间。

Computing all persistent subspaces of a reaction-diffusion system.

作者信息

Peter Stephan, Woitke Linus, Dittrich Peter, Ibrahim Bashar

机构信息

Department of Basic Sciences, Ernst-Abbe University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany.

Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Fürstengraben, 07743, Jena, Germany.

出版信息

Sci Rep. 2023 Oct 11;13(1):17169. doi: 10.1038/s41598-023-44244-x.

Abstract

An algorithm is presented for computing a reaction-diffusion partial differential equation (PDE) system for all possible subspaces that can hold a persistent solution of the equation. For this, all possible sub-networks of the underlying reaction network that are distributed organizations (DOs) are identified. Recently it has been shown that a persistent subspace must be a DO. The algorithm computes the hierarchy of DOs starting from the largest by a linear programming approach using integer cuts. The underlying constraints use elementary reaction closures as minimal building blocks to guarantee local closedness and global self-maintenance, required for a DO. Additionally, the algorithm delivers for each subspace an affiliated set of organizational reactions and minimal compartmentalization that is necessary for this subspace to persist. It is proved that all sets of organizational reactions of a reaction network, as already DOs, form a lattice. This lattice contains all potentially persistent sets of reactions of all constrained solutions of reaction-diffusion PDEs. This provides a hierarchical structure of all persistent subspaces with regard to the species and also to the reactions of the reaction-diffusion PDE system. Here, the algorithm is described and the corresponding Python source code is provided. Furthermore, an analysis of its run time is performed and all models from the BioModels database as well as further examples are examined. Apart from the practical implications of the algorithm the results also give insights into the complexity of solving reaction-diffusion PDEs.

摘要

本文提出了一种算法,用于计算反应扩散偏微分方程(PDE)系统在所有可能子空间中的解,这些子空间能够保持该方程的持久解。为此,需要确定基础反应网络中所有可能的子网,这些子网是分布式组织(DO)。最近研究表明,持久子空间必须是一个DO。该算法通过使用整数割的线性规划方法,从最大的DO开始计算DO的层次结构。基础约束使用基本反应闭包作为最小构建块,以确保DO所需的局部封闭性和全局自我维持性。此外,该算法为每个子空间提供一组附属的组织反应和最小分区,这是该子空间持久存在所必需的。已证明反应网络的所有组织反应集(如DO)构成一个格。这个格包含反应扩散PDE所有约束解的所有潜在持久反应集。这提供了一个关于反应扩散PDE系统的物种和反应的所有持久子空间的层次结构。这里描述了该算法并提供了相应的Python源代码。此外,还对其运行时间进行了分析,并研究了来自BioModels数据库的所有模型以及更多示例。除了该算法的实际意义外,结果还深入了解了求解反应扩散PDE的复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aea/10567720/884f55bf7e73/41598_2023_44244_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验