Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
Department of Urology, National Taiwan University College of Medicine and Hospital, 7 Zhongshan South Road, Taipei, 100225, Taiwan, Republic of China.
J Transl Med. 2023 Oct 11;21(1):714. doi: 10.1186/s12967-023-04424-9.
Currently, there are no accurate markers for predicting potentially lethal prostate cancer (PC) before biopsy. This study aimed to develop urine tests to predict clinically significant PC (sPC) in men at risk.
Urine samples from 928 men, namely, 660 PC patients and 268 benign subjects, were analyzed by gas chromatography/quadrupole time-of-flight mass spectrophotometry (GC/Q-TOF MS) metabolomic profiling to construct four predictive models. Model I discriminated between PC and benign cases. Models II, III, and GS, respectively, predicted sPC in those classified as having favorable intermediate risk or higher, unfavorable intermediate risk or higher (according to the National Comprehensive Cancer Network risk groupings), and a Gleason sum (GS) of ≥ 7. Multivariable logistic regression was used to evaluate the area under the receiver operating characteristic curves (AUC).
In Models I, II, III, and GS, the best AUCs (0.94, 0.85, 0.82, and 0.80, respectively; training cohort, N = 603) involved 26, 24, 26, and 22 metabolites, respectively. The addition of five clinical risk factors (serum prostate-specific antigen, patient age, previous negative biopsy, digital rectal examination, and family history) significantly improved the AUCs of the models (0.95, 0.92, 0.92, and 0.87, respectively). At 90% sensitivity, 48%, 47%, 50%, and 36% of unnecessary biopsies could be avoided. These models were successfully validated against an independent validation cohort (N = 325). Decision curve analysis showed a significant clinical net benefit with each combined model at low threshold probabilities. Models II and III were more robust and clinically relevant than Model GS.
This urine test, which combines urine metabolic markers and clinical factors, may be used to predict sPC and thereby inform the necessity of biopsy in men with an elevated PC risk.
目前,在活检前尚无准确的标志物可用于预测具有潜在致命性的前列腺癌(PC)。本研究旨在开发尿液检测方法以预测有风险的男性中的临床显著 PC(sPC)。
通过气相色谱/四极杆飞行时间质谱联用(GC/Q-TOF MS)代谢组学分析 928 名男性的尿液样本,其中 660 名 PC 患者和 268 名良性患者,以构建四个预测模型。模型 I 用于区分 PC 和良性病例。模型 II、III 和 GS 分别预测根据国家综合癌症网络风险分组,被归类为中危或以上、高危或以上以及 Gleason 总和(GS)≥7 的患者中的 sPC。多变量逻辑回归用于评估受试者工作特征曲线(ROC)下面积(AUC)。
在模型 I、II、III 和 GS 中,最佳 AUC(分别为 0.94、0.85、0.82 和 0.80;训练队列,N=603)涉及 26、24、26 和 22 种代谢物。添加 5 种临床风险因素(血清前列腺特异性抗原、患者年龄、以前的阴性活检、直肠指检和家族史)显著提高了模型的 AUC(分别为 0.95、0.92、0.92 和 0.87)。在 90%的灵敏度下,可避免 48%、47%、50%和 36%的不必要活检。这些模型在独立验证队列(N=325)中得到了成功验证。决策曲线分析表明,在低阈值概率下,每个组合模型都具有显著的临床净获益。模型 II 和 III 比模型 GS 更稳健且更具临床相关性。
这种尿液检测方法结合了尿液代谢标志物和临床因素,可能用于预测 sPC,从而告知具有较高 PC 风险的男性活检的必要性。