Suppr超能文献

利用主成分分析的反向传播神经网络重建缺失的时变地面沉降数据。

Reconstructing missing time-varying land subsidence data using back propagation neural network with principal component analysis.

作者信息

Liu Chih-Yu, Ku Cheng-Yu, Hsu Jia-Fu

机构信息

Department of Civil Engineering, National Central University, Taoyuan, 320317, Taiwan.

Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.

出版信息

Sci Rep. 2023 Oct 13;13(1):17349. doi: 10.1038/s41598-023-44642-1.

Abstract

Land subsidence, a complex geophysical phenomenon, necessitates comprehensive time-varying data to understand regional subsidence patterns over time. This article focuses on the crucial task of reconstructing missing time-varying land subsidence data in the Choshui Delta, Taiwan. We propose a novel algorithm that leverages a multi-factorial perspective to accurately reconstruct the missing time-varying land subsidence data. By considering eight influential factors, our method seeks to capture the intricate interplay among these variables in the land subsidence process. Utilizing Principal Component Analysis (PCA), we ascertain the significance of these influencing factors and their principal components in relation to land subsidence. To reconstruct the absent time-dependent land subsidence data using PCA-derived principal components, we employ the backpropagation neural network. We illustrate the approach using data from three multi-layer compaction monitoring wells from 2008 to 2021 in a highly subsiding region within the study area. The proposed model is validated, and the resulting network is used to reconstruct the missing time-varying subsidence data. The accuracy of the reconstructed data is evaluated using metrics such as root mean square error and coefficient of determination. The results demonstrate the high accuracy of the proposed neural network model, which obviates the need for a sophisticated hydrogeological numerical model involving corresponding soil compaction parameters.

摘要

地面沉降是一种复杂的地球物理现象,需要综合的时变数据来了解区域沉降随时间的变化模式。本文聚焦于重建台湾浊水溪三角洲缺失的时变地面沉降数据这一关键任务。我们提出了一种新颖的算法,该算法利用多因素视角来准确重建缺失的时变地面沉降数据。通过考虑八个影响因素,我们的方法旨在捕捉这些变量在地面沉降过程中的复杂相互作用。利用主成分分析(PCA),我们确定了这些影响因素及其主成分与地面沉降的相关性。为了使用PCA导出的主成分重建缺失的随时间变化的地面沉降数据,我们采用了反向传播神经网络。我们使用研究区域内一个高度沉降区域中2008年至2021年三个多层压实监测井的数据来说明该方法。对所提出的模型进行了验证,并使用所得网络重建缺失的时变沉降数据。使用均方根误差和决定系数等指标评估重建数据的准确性。结果表明所提出的神经网络模型具有很高的准确性,无需涉及相应土壤压实参数的复杂水文地质数值模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54bd/10575985/a47b320dc98b/41598_2023_44642_Fig6_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验