Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados, IPN, Unidad Mérida, Merida 97310, Yucatán, Mexico.
Int J Mol Sci. 2023 Oct 6;24(19):14949. doi: 10.3390/ijms241914949.
Parasitic diseases, including giardiasis caused by (), present a considerable global health burden. The limited effectiveness and adverse effects of current treatment options underscore the necessity for novel therapeutic compounds. In this study, we employed a rational design strategy to synthesize retroalbendazole (), aiming to address the limitations associated with albendazole, a commonly used drug for giardiasis treatment. exhibited enhanced in vitro activity against trophozoites, demonstrating nanomolar potency (IC = 83 nM), outperforming albendazole (189 nM). Moreover, our in vivo murine model of giardiasis displayed a strong correlation, supporting the efficacy of , which exhibited an eleven-fold increase in potency compared to albendazole, with median effective dose (ED) values of 5 µg/kg and 55 µg/kg, respectively. A notable finding was 's significantly improved water solubility (245.74 µg/mL), representing a 23-fold increase compared to albendazole, thereby offering potential opportunities for developing derivatives that effectively target invasive parasites. The molecular docking study revealed that displays an interaction profile with tubulin similar to albendazole, forming hydrogen bonds with Glu198 and Cys236 of the β-tubulin. Additionally, molecular dynamics studies demonstrated that has a greater number of hydrophobic interactions with the binding site in the β-tubulin, due to the orientation of the propylthio substituent. Consequently, exhibited a higher affinity compared to albendazole. Overall, our findings underscore 's potential as a promising therapeutic candidate not only for giardiasis but also for other parasitic diseases.
寄生虫病,包括由()引起的贾第虫病,对全球健康造成了相当大的负担。当前治疗选择的有限效果和不良反应突显了新型治疗化合物的必要性。在这项研究中,我们采用了合理的设计策略来合成反阿苯达唑(),旨在解决阿苯达唑(一种常用于贾第虫病治疗的药物)相关的局限性。 对滋养体表现出增强的体外活性,具有纳摩尔效力(IC = 83 nM),优于阿苯达唑(189 nM)。此外,我们的贾第虫病体内小鼠模型显示出很强的相关性,支持 的疗效,与阿苯达唑相比, 显示出 11 倍的效力增加,其中位数有效剂量(ED)值分别为 5 µg/kg 和 55 µg/kg。一个值得注意的发现是 的水溶性显著提高(245.74 µg/mL),与阿苯达唑相比提高了 23 倍,从而为开发有效靶向侵袭性寄生虫的衍生物提供了潜力。分子对接研究表明, 与微管蛋白的相互作用模式与阿苯达唑相似,与β-微管蛋白的 Glu198 和 Cys236 形成氢键。此外,分子动力学研究表明, 与β-微管蛋白结合部位的疏水相互作用数量更多,这归因于丙基硫取代基的取向。因此, 与阿苯达唑相比表现出更高的亲和力。总体而言,我们的研究结果强调了 的潜力,不仅作为贾第虫病的有前途的治疗候选物,而且作为其他寄生虫病的治疗候选物。