Wang Jingyuan, Zhou Jiangjie, Wu Hanyu, Chen Yangyu, Liang Baosheng
Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
Department of Respiration and Critical Care Medicine, Beijing Chaoyang Hospital, Beijing 100020, China.
Diagnostics (Basel). 2023 Oct 5;13(19):3136. doi: 10.3390/diagnostics13193136.
By incorporating the cost of multiple tumor-marker tests, this work aims to comprehensively evaluate the financial burden of patients and the accuracy of machine learning models in diagnosing malignant pleural effusion (MPE) using tumor-marker combinations.
Carcinoembryonic antigen (CEA), carbohydrate antigen (CA)19-9, CA125, and CA15-3 were collected from pleural effusion (PE) and peripheral blood (PB) of 319 patients with pleural effusion. A stacked ensemble (stacking) model based on five machine learning models was utilized to evaluate the diagnostic accuracy of tumor markers. We evaluated the discriminatory accuracy of various tumor-marker combinations using the area under the curve (AUC), sensitivity, and specificity. To evaluate the cost-effectiveness of different tumor-marker combinations, a comprehensive score (C-score) with a tuning parameter was proposed.
In most scenarios, the stacking model outperformed the five individual machine learning models in terms of AUC. Among the eight tumor markers, the CEA in PE (PE.CEA) showed the best AUC of 0.902. Among all tumor-marker combinations, the PE.CA19-9 + PE.CA15-3 + PE.CEA + PB.CEA combination (C9 combination) achieved the highest AUC of 0.946. When puts more weight on the cost, the highest C-score was achieved with the single PE.CEA marker. As puts over 0.8 weight on AUC, the C-score favored diagnostic models with more expensive tumor-marker combinations. Specifically, when was set to 0.99, the C9 combination achieved the best C-score.
The stacking diagnostic model using PE.CEA is a relatively accurate and affordable choice in diagnosing MPE for patients without medical insurance or in a low economic level. The stacking model using the combination PE.CA19-9 + PE.CA15-3 + PE.CEA + PB.CEA is the most accurate diagnostic model and the best choice for patients without an economic burden. From a cost-effectiveness perspective, the stacking diagnostic model with PE.CA19-9 + PE.CA15-3 + PE.CEA combination is particularly recommended, as it gains the best trade-off between the low cost and high effectiveness.
通过纳入多种肿瘤标志物检测的成本,本研究旨在综合评估患者的经济负担以及使用肿瘤标志物组合的机器学习模型诊断恶性胸腔积液(MPE)的准确性。
收集319例胸腔积液患者胸腔积液(PE)和外周血(PB)中的癌胚抗原(CEA)、糖类抗原(CA)19-9、CA125和CA15-3。利用基于五个机器学习模型的堆叠集成(stacking)模型评估肿瘤标志物的诊断准确性。我们使用曲线下面积(AUC)、敏感性和特异性评估各种肿瘤标志物组合的鉴别准确性。为了评估不同肿瘤标志物组合的成本效益,提出了一个带有调整参数的综合评分(C评分)。
在大多数情况下,stacking模型在AUC方面优于五个单独的机器学习模型。在八种肿瘤标志物中,胸腔积液中的CEA(PE.CEA)显示出最佳的AUC,为0.902。在所有肿瘤标志物组合中, 胸腔积液CA19-9+胸腔积液CA15-3+胸腔积液CEA+外周血CEA组合(C9组合)的AUC最高,为0.946。当调整参数更重视成本时,单一的胸腔积液CEA标志物获得最高的C评分。当调整参数对AUC的权重超过0.8时,C评分更倾向于使用更昂贵肿瘤标志物组合的诊断模型。具体而言,当调整参数设置为0.99时,C9组合获得最佳C评分。
对于没有医疗保险或经济水平较低的患者,使用胸腔积液CEA的stacking诊断模型是诊断MPE相对准确且经济实惠的选择。使用胸腔积液CA19-9+胸腔积液CA15-3+胸腔积液CEA+外周血CEA组合的stacking模型是最准确的诊断模型,也是没有经济负担患者的最佳选择。从成本效益的角度来看,特别推荐使用胸腔积液CA19-9+胸腔积液CA15-3+胸腔积液CEA组合的stacking诊断模型,因为它在低成本和高效益之间取得了最佳平衡。