Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA.
Comput Biol Med. 2023 Nov;166:107513. doi: 10.1016/j.compbiomed.2023.107513. Epub 2023 Oct 1.
Cardiovascular diseases remain the leading cause of death globally. In recent years, vagal nerve stimulation (VNS) has shown promising results in the treatment of a number of cardiovascular diseases. In this approach, mild electrical pulses are sent to the brain via the vagus nerve. This open-loop neurostimulation, however, leads to various side effects due to physiological and inter-patient variability and therefore a closed-loop delivery strategy of electrical pulses that accounts for this variability is desired. In this context, we envision data-driven sparse dynamical model parameterized by patient-specific data as appropriate for use in closed loop controller design. In this work, we build a dynamical model for mean arterial pressure and heart rate using the method sparse identification of nonlinear dynamics (SINDy). As a proxy for real datasets or measurements from a patient, we simulate a mechanistic model from the literature and then discover a data-driven model for predicting mean arterial pressure and heart rate in response to neural stimulus. This discovered model is then used to design a controller to be implemented in closed-loop via model predictive control. We observe that this data-driven model is interpretable, consistent with experiments, provides insights on the sensitivity of different stimulation locations and simplifies the formulation of the optimal control problem. Noting the set-point tracking performance of this closed-loop model-based controller that uses this discovered model, we conclude that the model is adequate in capturing the dynamics of a highly nonlinear cardiovascular system for the purpose of optimal predictive controller design.
心血管疾病仍然是全球主要的死亡原因。近年来,迷走神经刺激(VNS)在治疗多种心血管疾病方面显示出了有希望的结果。在这种方法中,通过迷走神经向大脑发送轻微的电脉冲。然而,这种开环神经刺激由于生理和个体间变异性而导致各种副作用,因此需要一种闭环电脉冲传递策略来考虑这种变异性。在这种情况下,我们设想使用患者特定数据参数化的数据驱动稀疏动态模型适合闭环控制器设计。在这项工作中,我们使用稀疏非线性动力学识别(SINDy)方法为平均动脉压和心率构建了一个动态模型。作为真实数据集或来自患者的测量值的代理,我们从文献中模拟了一个机械模型,然后发现了一个用于预测神经刺激对平均动脉压和心率的响应的基于数据的模型。然后,使用此发现的模型来设计通过模型预测控制在闭环中实现的控制器。我们观察到,该数据驱动模型是可解释的,与实验一致,提供了关于不同刺激位置敏感性的见解,并简化了最优控制问题的公式。注意使用此发现的模型的基于闭环模型的控制器的设定点跟踪性能,我们得出结论,该模型足以捕获高度非线性心血管系统的动态,以进行最优预测控制器设计。