Suppr超能文献

多组学整合策略在法医学死后间隔时间中的应用。

Multi-omics integration strategy in the post-mortem interval of forensic science.

机构信息

School of Forensic Medicine, Shanxi Medical University, No. 98, University Street, Wujinshan Town, Yuci District, Jinzhong City, Shanxi Province, 030604, PR China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, China.

Criminal Investigation Detachment, Baotou City Public Security Bureau, No. 191, Jianshe Road, Qingshan District, Baotou City, Inner Mongolia Autonomous Region, 014030, PR China.

出版信息

Talanta. 2024 Feb 1;268(Pt 1):125249. doi: 10.1016/j.talanta.2023.125249. Epub 2023 Sep 29.

Abstract

Estimates of post-mortem interval (PMI), which often serve as pivotal evidence in forensic contexts, are fundamentally based on assessments of variability among diverse molecular markers (including proteins and metabolites), their correlations, and their temporal changes in post-mortem organisms. Nevertheless, the present approach to estimating the PMI is not comprehensive and exhibits poor performance. We developed an innovative approach that integrates multi-omics and artificial intelligence, using multimolecular, multimarker, and multidimensional information to accurately describe the intricate biological processes that occur after death, ultimately enabling inference of the PMI. Called the multi-omics stacking model (MOSM), it combines metabolomics, protein microarray electrophoresis, and fourier transform-infrared spectroscopy data. It shows improved prediction accuracy of the PMI, which is urgently needed in the forensic field. It achieved an accuracy of 0.93, generalized area under the receiver operating characteristic curve of 0.98, and minimum mean absolute error of 0.07. The MOSM integration framework not only considers multiple markers but also incorporates machine-learning models with distinct algorithmic principles. The diversity of biological mechanisms and algorithmic models further ensures the generalizability and robustness of PMI estimation.

摘要

死后间隔时间(PMI)的估计,通常作为法医学中的关键证据,其基本依据是对不同分子标记物(包括蛋白质和代谢物)的变异性、它们的相关性以及死后生物体内的时间变化进行评估。然而,目前的 PMI 估计方法并不全面,表现不佳。我们开发了一种创新的方法,该方法集成了多组学和人工智能,使用多分子、多标记物和多维信息来准确描述死亡后发生的复杂生物过程,最终能够推断 PMI。该方法称为多组学堆叠模型(MOSM),它结合了代谢组学、蛋白质微阵列电泳和傅里叶变换红外光谱数据。它显示出了改进的 PMI 预测准确性,这在法医学领域是迫切需要的。它的 PMI 估计准确率达到 0.93,广义接收器操作特征曲线下面积为 0.98,最小平均绝对误差为 0.07。MOSM 集成框架不仅考虑了多个标记物,还结合了具有不同算法原理的机器学习模型。生物机制和算法模型的多样性进一步确保了 PMI 估计的泛化能力和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验