Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.
Nat Commun. 2023 Oct 18;14(1):6575. doi: 10.1038/s41467-023-42249-8.
Manipulating gene expression in the host genome with high precision is crucial for controlling cellular function and behavior. Here, we present a precise, non-invasive, and tunable strategy for controlling the expression of multiple endogenous genes both in vitro and in vivo, utilizing ultrasound as the stimulus. By engineering a hyper-efficient dCas12a and effector under a heat shock promoter, we demonstrate a system that can be inducibly activated through thermal energy produced by ultrasound absorption. This system allows versatile thermal induction of gene activation or base editing across cell types, including primary T cells, and enables multiplexed gene activation using a single guide RNA array. In mouse models, localized temperature elevation guided by high-intensity focused ultrasound effectively triggers reporter gene expression in implanted cells. Our work underscores the potential of ultrasound as a clinically viable approach to enhance cell and gene-based therapies via precision genome and epigenome engineering.
利用超声作为刺激,我们提出了一种精确、非侵入性且可调的策略,用于在体外和体内控制多个内源性基因的表达。通过工程化一个在热休克启动子下的超高效 dCas12a 和效应物,我们展示了一个可以通过超声吸收产生的热能诱导激活的系统。该系统允许通过热能诱导在包括原代 T 细胞在内的多种细胞类型中灵活地激活基因或进行碱基编辑,并使用单个向导 RNA 阵列实现多基因激活。在小鼠模型中,高强度聚焦超声引导的局部温度升高可有效触发植入细胞中的报告基因表达。我们的工作强调了超声作为一种有临床应用潜力的方法,通过精确的基因组和表观基因组工程来增强细胞和基因治疗。