Khatib Muhammad, Zhao Eric Tianjiao, Wei Shiyuan, Abramson Alex, Bishop Estelle Spear, Chen Chih-Hsin, Thomas Anne-Laure, Xu Chengyi, Park Jaeho, Lee Yeongjun, Hamnett Ryan, Yu Weilai, Root Samuel E, Yuan Lei, Chakhtoura Dorine, Kim Kyun Kyu, Zhong Donglai, Nishio Yuya, Zhao Chuanzhen, Wu Can, Jiang Yuanwen, Zhang Anqi, Li Jinxing, Wang Weichen, Salimi-Jazi Fereshteh, Rafeeqi Talha A, Hemed Nofar Mintz, Tok Jeffrey B-H, Chen Xiaoke, Kaltschmidt Julia A, Dunn James C Y, Bao Zhenan
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
bioRxiv. 2023 Oct 3:2023.10.02.560482. doi: 10.1101/2023.10.02.560482.
Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.
生物电子纤维因其紧凑性、易于植入以及能够集成诸如传感和刺激等各种功能,在研究和临床应用方面都具有潜力。然而,现有的设备存在体积庞大、刚性、功能有限以及活性组件密度低等问题。这些限制源于传统微加工方法(如光刻)与弯曲、细长的纤维结构不兼容,难以在一维(1D)纤维设备上集成许多组件。在此,我们介绍一种制造方法——“螺旋转换”,将包含微加工设备的二维(2D)薄膜转换为一维软纤维。这种方法能够创建高密度多模态软生物电子纤维,称为螺旋神经线(S-NeuroString),同时能够精确控制功能组件的纵向、角度和径向定位与分布。我们展示了S-NeuroString在动态和柔软的胃肠道(GI)系统内进行运动映射、血清素传感和组织刺激,以及在大脑中进行单单元记录的效用。所描述的生物电子纤维在下一代多功能可植入电子设备方面具有巨大潜力。