The Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.
Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin 300392, People's Republic of China.
J Neural Eng. 2023 Nov 10;20(6). doi: 10.1088/1741-2552/ad0650.
Detecting movement intention is a typical use of brain-computer interfaces (BCI). However, as an endogenous electroencephalography (EEG) feature, the neural representation of movement is insufficient for improving motor-based BCI. This study aimed to develop a new movement augmentation BCI encoding paradigm by incorporating the cognitive function of rhythmic temporal prediction, and test the feasibility of this new paradigm in optimizing detections of movement intention.A visual-motion synchronization task was designed with two movement intentions (left vs. right) and three rhythmic temporal prediction conditions (1000 ms vs. 1500 ms vs. no temporal prediction). Behavioural and EEG data of 24 healthy participants were recorded. Event-related potentials (ERPs), event-related spectral perturbation induced by left- and right-finger movements, the common spatial pattern (CSP) and support vector machine, Riemann tangent space algorithm and logistic regression were used and compared across the three temporal prediction conditions, aiming to test the impact of temporal prediction on movement detection.Behavioural results showed significantly smaller deviation time for 1000 ms and 1500 ms conditions. ERP analyses revealed 1000 ms and 1500 ms conditions led to rhythmic oscillations with a time lag in contralateral and ipsilateral areas of movement. Compared with no temporal prediction, 1000 ms condition exhibited greater beta event-related desynchronization (ERD) lateralization in motor area (< 0.001) and larger beta ERD in frontal area (< 0.001). 1000 ms condition achieved an averaged left-right decoding accuracy of 89.71% using CSP and 97.30% using Riemann tangent space, both significantly higher than no temporal prediction. Moreover, movement and temporal information can be decoded simultaneously, achieving 88.51% four-classification accuracy.The results not only confirm the effectiveness of rhythmic temporal prediction in enhancing detection ability of motor-based BCI, but also highlight the dual encodings of movement and temporal information within a single BCI paradigm, which is promising to expand the range of intentions that can be decoded by the BCI.
运动意图的检测是脑机接口(BCI)的典型应用。然而,作为一种内源性脑电图(EEG)特征,运动的神经表示对于提高基于运动的 BCI 来说还不够。本研究旨在通过纳入节律时间预测的认知功能,开发一种新的运动增强 BCI 编码范式,并测试该新范式在优化运动意图检测中的可行性。设计了一个视觉运动同步任务,有两种运动意图(左与右)和三种节律时间预测条件(1000ms 与 1500ms 与无时间预测)。记录了 24 名健康参与者的行为和 EEG 数据。使用事件相关电位(ERPs)、左、右手运动引起的事件相关频谱扰动、共同空间模式(CSP)和支持向量机、黎曼切空间算法和逻辑回归,比较了三种时间预测条件下的运动检测效果。行为结果表明,1000ms 和 1500ms 条件的偏差时间明显更小。ERP 分析显示,1000ms 和 1500ms 条件导致在运动对侧和同侧区域出现时间滞后的节律振荡。与无时间预测相比,1000ms 条件在运动区表现出更大的β事件相关去同步(ERD)侧化(<0.001)和额区更大的β ERD(<0.001)。使用 CSP 和黎曼切空间算法,1000ms 条件的平均左右解码准确率分别为 89.71%和 97.30%,均显著高于无时间预测。此外,运动和时间信息可以同时解码,达到 88.51%的四分类准确率。结果不仅证实了节律时间预测在增强基于运动的 BCI 检测能力方面的有效性,还突出了单个 BCI 范式中运动和时间信息的双重编码,有望扩大 BCI 可解码的意图范围。