Mollalo Abolfazl, Hamidi Bashir, Lenert Leslie, Alekseyenko Alexander V
Medical University of South Carolina.
Res Sq. 2024 Jan 15:rs.3.rs-3443865. doi: 10.21203/rs.3.rs-3443865/v2.
Electronic health records (EHR) commonly contain patient addresses that provide valuable data for geocoding and spatial analysis, enabling more comprehensive descriptions of individual patients for clinical purposes. Despite the widespread use of EHR in clinical decision support and interventions, no systematic review has examined the extent to which spatial analysis is used to characterize patient phenotypes.
This study reviews advanced spatial analyses that employed individual-level health data from EHR within the US to characterize patient phenotypes.
We systematically evaluated English-language peer-reviewed articles from PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar databases from inception to August 20, 2023, without imposing constraints on time, study design, or specific health domains.
Only 49 articles met the eligibility criteria. These articles utilized diverse spatial methods, with a predominant focus on clustering techniques, while spatiotemporal analysis (frequentist and Bayesian) and modeling were relatively underexplored. A noteworthy surge (n = 42, 85.7%) in publications was observed post-2017. The publications investigated a variety of adult and pediatric clinical areas, including infectious disease, endocrinology, and cardiology, using phenotypes defined over a range of data domains, such as demographics, diagnoses, and visits. The primary health outcomes investigated were asthma, hypertension, and diabetes. Notably, patient phenotypes involving genomics, imaging, and notes were rarely utilized.
This review underscores the growing interest in spatial analysis of EHR-derived data and highlights knowledge gaps in clinical health, phenotype domains, and spatial methodologies. Additionally, this review proposes guidelines for harnessing the potential of spatial analysis to enhance the context of individual patients for future clinical decision support.
电子健康记录(EHR)通常包含患者地址,这些地址为地理编码和空间分析提供了有价值的数据,有助于在临床层面更全面地描述个体患者。尽管EHR在临床决策支持和干预中得到广泛应用,但尚无系统评价研究空间分析在刻画患者表型方面的应用程度。
本研究回顾了利用美国EHR中的个体层面健康数据来刻画患者表型的先进空间分析方法。
我们系统地评估了来自PubMed/MEDLINE、Scopus、Web of Science和谷歌学术数据库中从建库至2023年8月20日的英文同行评议文章,未对时间、研究设计或特定健康领域施加限制。
仅有49篇文章符合纳入标准。这些文章采用了多种空间方法,主要集中在聚类技术,而时空分析(频率学派和贝叶斯方法)和建模的探索相对较少。2017年后观察到出版物数量显著增加(n = 42,85.7%)。这些出版物研究了各种成人和儿科临床领域,包括传染病、内分泌学和心脏病学,使用了在一系列数据领域(如人口统计学、诊断和就诊)定义的表型。研究的主要健康结局为哮喘、高血压和糖尿病。值得注意的是,涉及基因组学、影像学和病历记录的患者表型很少被使用。
本综述强调了对EHR衍生数据进行空间分析的兴趣日益增长,并突出了临床健康、表型领域和空间方法学方面的知识空白。此外,本综述提出了利用空间分析潜力的指南,以增强个体患者背景信息,为未来临床决策支持提供依据。