Suppr超能文献

LSR-YOLO:一种用于移动端绵羊面部识别的高精度轻量级模型。

LSR-YOLO: A High-Precision, Lightweight Model for Sheep Face Recognition on the Mobile End.

作者信息

Zhang Xiwen, Xuan Chuanzhong, Xue Jing, Chen Boyuan, Ma Yanhua

机构信息

College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.

Inner Mongolia Engineering Research Center for Intelligent Facilities in Prataculture and Livestock Breeding, Hohhot 010018, China.

出版信息

Animals (Basel). 2023 May 31;13(11):1824. doi: 10.3390/ani13111824.

Abstract

The accurate identification of sheep is crucial for breeding, behavioral research, food quality tracking, and disease prevention on modern farms. As a result of the time-consuming, expensive, and unreliable problems of traditional sheep-identification methods, relevant studies have built sheep face recognition models to recognize sheep through facial images. However, the existing sheep face recognition models face problems such as high computational costs, large model sizes, and weak practicality. In response to the above issues, this study proposes a lightweight sheep face recognition model named LSR-YOLO. Specifically, the ShuffleNetv2 module and Ghost module were used to replace the feature extraction module in the backbone and neck of YOLOv5s to reduce floating-point operations per second (FLOPs) and parameters. In addition, the coordinated attention (CA) module was introduced into the backbone to suppress non-critical information and improve the feature extraction ability of the recognition model. We collected facial images of 63 small-tailed Han sheep to construct a sheep face dataset and further evaluate the proposed method. Compared to YOLOv5s, the FLOPs and parameters of LSR-YOLO decreased by 25.5% and 33.4%, respectively. LSR-YOLO achieved the best performance on the sheep face dataset, and the mAP@0.5 reached 97.8% when the model size was only 9.5 MB. The experimental results show that LSR-YOLO has significant advantages in recognition accuracy and model size. Finally, we integrated LSR-YOLO into mobile devices and further developed a recognition system to achieve real-time recognition. The results show that LSR-YOLO is an effective method for identifying sheep. The method has high recognition accuracy and fast recognition speed, which gives it a high application value in mobile recognition and welfare breeding.

摘要

在现代农场中,准确识别绵羊对于育种、行为研究、食品质量追踪和疾病预防至关重要。由于传统绵羊识别方法存在耗时、昂贵且不可靠的问题,相关研究构建了绵羊面部识别模型,通过面部图像来识别绵羊。然而,现有的绵羊面部识别模型面临计算成本高、模型尺寸大以及实用性弱等问题。针对上述问题,本研究提出了一种名为LSR - YOLO的轻量级绵羊面部识别模型。具体而言,使用ShuffleNetv2模块和Ghost模块替换YOLOv5s主干和颈部的特征提取模块,以减少每秒浮点运算次数(FLOPs)和参数。此外,将协同注意力(CA)模块引入主干,以抑制非关键信息并提高识别模型的特征提取能力。我们收集了63只小尾寒羊的面部图像,构建了一个绵羊面部数据集,并进一步评估所提出的方法。与YOLOv5s相比,LSR - YOLO的FLOPs和参数分别减少了25.5%和33.4%。LSR - YOLO在绵羊面部数据集上取得了最佳性能,当模型尺寸仅为9.5MB时,mAP@0.5达到了97.8%。实验结果表明,LSR - YOLO在识别准确率和模型尺寸方面具有显著优势。最后,我们将LSR - YOLO集成到移动设备中,并进一步开发了一个识别系统以实现实时识别。结果表明,LSR - YOLO是一种有效的绵羊识别方法。该方法具有高识别准确率和快速识别速度,在移动识别和福利育种中具有很高的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d694/10252084/1ff8047c4df8/animals-13-01824-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验