Long Chang, Liu Xiaolong, Wan Kaiwei, Jiang Yuheng, An Pengfei, Yang Caoyu, Wu Guoling, Wang Wenyang, Guo Jun, Li Lei, Pang Kanglei, Li Qun, Cui Chunhua, Liu Shaoqin, Tan Ting, Tang Zhiyong
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
Sci Adv. 2023 Oct 27;9(43):eadi6119. doi: 10.1126/sciadv.adi6119.
Oxide-derived copper (OD-Cu) is the most efficient and likely practical electrocatalyst for CO reduction toward multicarbon products. However, the inevitable but poorly understood reconstruction from the pristine state to the working state of OD-Cu under strong reduction conditions largely hinders the rational construction of catalysts toward multicarbon products, especially C products like n-propanol. Here, we simulate the reconstruction of CuO and CuO into their derived Cu by molecular dynamics, revealing that CuO-derived Cu (CuOD-Cu) intrinsically has a richer population of undercoordinated Cu sites and higher surficial Cu atom density than the counterpart CuO-derived Cu (CuOD-Cu) because of the vigorous oxygen removal. In situ spectroscopes disclose that the coordination number of CuOD-Cu is considerably lower than that of CuOD-Cu, enabling the fast kinetics of CO reaction and strengthened binding of *C intermediate(s). Benefiting from the rich undercoordinated Cu sites, CuOD-Cu achieves remarkable n-propanol faradaic efficiency up to ~17.9%, whereas the CuOD-Cu dominantly generates formate.
氧化物衍生铜(OD-Cu)是将CO还原为多碳产物最有效且可能实用的电催化剂。然而,在强还原条件下,OD-Cu从原始状态到工作状态不可避免但却鲜为人知的重构,在很大程度上阻碍了针对多碳产物,特别是像正丙醇这样的C产物的催化剂的合理构建。在此,我们通过分子动力学模拟了CuO和CuO向其衍生铜的重构,结果表明,由于剧烈的氧去除,CuO衍生铜(CuOD-Cu)本质上比对应的CuO衍生铜(CuOD-Cu)具有更丰富的低配位Cu位点和更高的表面Cu原子密度。原位光谱表明,CuOD-Cu的配位数远低于CuOD-Cu,这使得CO反应具有快速动力学,并增强了*C中间体的结合。得益于丰富的低配位Cu位点,CuOD-Cu实现了高达约17.9%的显著正丙醇法拉第效率,而CuOD-Cu主要生成甲酸盐。