Suppr超能文献

用于预测巴布亚新几内亚五岁以下儿童发育迟缓的机器学习算法

Machine Learning Algorithms for Predicting Stunting among Under-Five Children in Papua New Guinea.

作者信息

Shen Hao, Zhao Hang, Jiang Yi

机构信息

School of Public Health, Chongqing Medical University, Chongqing 400016, China.

出版信息

Children (Basel). 2023 Sep 30;10(10):1638. doi: 10.3390/children10101638.

Abstract

Preventing stunting is particularly important for healthy development across the life course. In Papua New Guinea (PNG), the prevalence of stunting in children under five years old has consistently not improved. Therefore, the primary objective of this study was to employ multiple machine learning algorithms to identify the most effective model and key predictors for stunting prediction in children in PNG. The study used data from the 2016-2018 Papua New Guinea Demographic Health Survey, including from 3380 children with complete height-for-age data. The least absolute shrinkage and selection operator (LASSO) and random-forest-recursive feature elimination were used for feature selection. Logistic regression, a conditional decision tree, a support vector machine with a radial basis function kernel, and an extreme gradient boosting machine (XGBoost) were employed to construct the prediction model. The performance of the final model was evaluated using accuracy, precision, recall, F1 score, and area under the curve (AUC). The results of the study showed that LASSO-XGBoost has the best performance for predicting stunting in PNG (AUC: 0.765; 95% CI: 0.714-0.819) with accuracy, precision, recall, and F1 scores of 0.728, 0.715, 0.628, and 0.669, respectively. Combined with the SHAP value method, the optimal prediction model identified living in the Highlands Region, the age of the child, being in the richest family, and having a larger or smaller birth size as the top five important characteristics for predicting stunting. Based on the model, the findings support the necessity of preventing stunting early in life. Emphasizing the nutritional status of vulnerable maternal and child populations in PNG is recommended to promote maternal and child health and overall well-being.

摘要

预防发育迟缓对人一生的健康发展尤为重要。在巴布亚新几内亚(PNG),五岁以下儿童发育迟缓的患病率一直没有改善。因此,本研究的主要目的是采用多种机器学习算法,以确定最有效的模型和巴布亚新几内亚儿童发育迟缓预测的关键预测因素。该研究使用了2016 - 2018年巴布亚新几内亚人口与健康调查的数据,包括3380名有完整年龄别身高数据的儿童。使用最小绝对收缩和选择算子(LASSO)和随机森林递归特征消除进行特征选择。采用逻辑回归、条件决策树、具有径向基函数核的支持向量机和极端梯度提升机(XGBoost)构建预测模型。使用准确率、精确率、召回率、F1分数和曲线下面积(AUC)评估最终模型的性能。研究结果表明,LASSO - XGBoost在预测巴布亚新几内亚发育迟缓方面具有最佳性能(AUC:0.765;95%置信区间:0.714 - 0.819),准确率、精确率、召回率和F1分数分别为0.728、0.715、0.628和0.669。结合SHAP值方法,最优预测模型确定居住在高地地区、儿童年龄、家庭最富有以及出生时体型较大或较小是预测发育迟缓的前五个重要特征。基于该模型,研究结果支持在生命早期预防发育迟缓的必要性。建议强调巴布亚新几内亚弱势母婴群体的营养状况,以促进母婴健康和整体福祉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea8/10605317/bbddb5d4ad11/children-10-01638-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验