Feng Min, Xu Juncai
Nanjing Rehabilitation Medical Center, The Affiliated Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
School of Chinese Language and Literature, Nanjing Normal University, Nanjing 210024, China.
Children (Basel). 2023 Oct 5;10(10):1654. doi: 10.3390/children10101654.
Autism spectrum disorder (ASD) necessitates prompt diagnostic scrutiny to enable immediate, targeted interventions. This study unveils an advanced convolutional-neural-network (CNN) algorithm that was meticulously engineered to examine resting-state functional magnetic resonance imaging (fMRI) for early ASD detection in pediatric cohorts. The CNN architecture amalgamates convolutional, pooling, batch-normalization, dropout, and fully connected layers, optimized for high-dimensional data interpretation. Rigorous preprocessing yielded 22,176 two-dimensional echo planar samples from 126 subjects (56 ASD, 70 controls) who were sourced from the Autism Brain Imaging Data Exchange (ABIDE I) repository. The model, trained on 17,740 samples across 50 epochs, demonstrated unparalleled diagnostic metrics-accuracy of 99.39%, recall of 98.80%, precision of 99.85%, and an F1 score of 99.32%-and thereby eclipsed extant computational methodologies. Feature map analyses substantiated the model's hierarchical feature extraction capabilities. This research elucidates a deep learning framework for computer-assisted ASD screening via fMRI, with transformative implications for early diagnosis and intervention.
自闭症谱系障碍(ASD)需要迅速进行诊断检查,以便能够立即进行有针对性的干预。本研究揭示了一种先进的卷积神经网络(CNN)算法,该算法经过精心设计,用于检查静息态功能磁共振成像(fMRI),以在儿科队列中早期检测ASD。CNN架构融合了卷积层、池化层、批量归一化层、随机失活层和全连接层,针对高维数据解释进行了优化。经过严格的预处理,从自闭症脑成像数据交换(ABIDE I)存储库中选取的126名受试者(56名ASD患者,70名对照)产生了22,176个二维回波平面样本。该模型在50个轮次的17,740个样本上进行训练,展示了无与伦比的诊断指标——准确率为99.39%,召回率为98.80%,精确率为99.85%,F1分数为99.32%——从而超越了现有的计算方法。特征图分析证实了该模型的分层特征提取能力。本研究阐明了一种通过fMRI进行计算机辅助ASD筛查的深度学习框架,对早期诊断和干预具有变革性意义。