Zhang Weipeng, Yang Jun, Knopf George K
Mechanical and Materials Engineering, The University of Western Ontario, N6A 5B9 London, Ontario, Canada.
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110 Shenzhen, Guangdong, China.
ACS Omega. 2023 Oct 10;8(42):38991-39003. doi: 10.1021/acsomega.3c03539. eCollection 2023 Oct 24.
Understanding the movement of silver ions (Ag) in the solvent of a thermally evaporated particle-free reactive silver ink droplet is essential for optimizing the electronic inkjet printing process. In this work, a numerical study based on the Navier-Stokes equations is used to examine the microflows inside the evaporating solvent of a reactive silver ink droplet and to predict the morphology of the resultant Ag particle aggregations that form during the heat-activated processes. The droplet evaporation of the water-ethylene glycol ink solvent (HO-(CHOH)) is simulated using COMSOL Multiphysics software. The model assumes that the evaporating fluid is heterogeneous due to the mass transfer of ethylene glycol molecules throughout the droplet by capillary flow. A layer of concentrated ethylene glycol forms at the fluid-substrate interface during solvent evaporation if the substrate is heated. The concentrated ethylene glycol molecules are then transported inward by the capillary action, and the resultant Ag particles, arising from the thermally driven reactions, accumulate at the bottom center of the drying droplet. The numerical simulations demonstrate that the droplet evaporation process depends on the water concentration in the solvent, substrate temperature, surface tension, and natural convection. Furthermore, the capillary flow dominates the fluid flow inside the evaporating droplet, causing some Ag particles to accumulate at the contact line, the commonly observed "coffee-ring effect". The results provide new insights into the chemical reactions that produce experimentally observed silver particle aggregations during the reactive silver ink droplet evaporation process and help establish realistic process parameters for improving the quality of inkjet-printed conductive silver films and electronic circuit microtraces.
了解热蒸发无颗粒反应性银墨滴溶剂中银离子(Ag)的运动对于优化电子喷墨打印工艺至关重要。在这项工作中,基于纳维-斯托克斯方程进行了数值研究,以研究反应性银墨滴蒸发溶剂内部的微流,并预测在热激活过程中形成的所得银颗粒聚集体的形态。使用COMSOL Multiphysics软件模拟了水-乙二醇油墨溶剂(HO-(CHOH))的墨滴蒸发。该模型假设,由于乙二醇分子通过毛细管流在整个墨滴中进行传质,蒸发流体是不均匀的。如果对基底进行加热,在溶剂蒸发过程中,在流体-基底界面会形成一层浓缩的乙二醇。然后,浓缩的乙二醇分子通过毛细管作用向内传输,由热驱动反应产生的所得银颗粒积聚在干燥墨滴的底部中心。数值模拟表明,墨滴蒸发过程取决于溶剂中的水浓度、基底温度、表面张力和自然对流。此外,毛细管流主导着蒸发墨滴内部的流体流动,导致一些银颗粒在接触线处积聚,即常见的“咖啡环效应”。这些结果为反应性银墨滴蒸发过程中产生实验观察到的银颗粒聚集体的化学反应提供了新的见解,并有助于建立实际的工艺参数,以提高喷墨打印导电银膜和电子电路微迹线的质量。