Suppr超能文献

基于拉普拉斯嵌入图字典学习的三维点云属性压缩

3-D Point Cloud Attribute Compression With -Laplacian Embedding Graph Dictionary Learning.

作者信息

Li Xin, Dai Wenrui, Li Shaohui, Li Chenglin, Zou Junni, Xiong Hongkai

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):975-993. doi: 10.1109/TPAMI.2023.3328377. Epub 2024 Jan 8.

Abstract

3-D point clouds facilitate 3-D visual applications with detailed information of objects and scenes but bring about enormous challenges to design efficient compression technologies. The irregular signal statistics and high-order geometric structures of 3-D point clouds cannot be fully exploited by existing sparse representation and deep learning based point cloud attribute compression schemes and graph dictionary learning paradigms. In this paper, we propose a novel p-Laplacian embedding graph dictionary learning framework that jointly exploits the varying signal statistics and high-order geometric structures for 3-D point cloud attribute compression. The proposed framework formulates a nonconvex minimization constrained by p-Laplacian embedding regularization to learn a graph dictionary varying smoothly along the high-order geometric structures. An efficient alternating optimization paradigm is developed by harnessing ADMM to solve the nonconvex minimization. To our best knowledge, this paper proposes the first graph dictionary learning framework for point cloud compression. Furthermore, we devise an efficient layered compression scheme that integrates the proposed framework to exploit the correlations of 3-D point clouds in a structured fashion. Experimental results demonstrate that the proposed framework is superior to state-of-the-art transform-based methods in M-term approximation and point cloud attribute compression and outperforms recent MPEG G-PCC reference software.

摘要

三维点云为三维视觉应用提供了物体和场景的详细信息,但给设计高效的压缩技术带来了巨大挑战。现有基于稀疏表示和深度学习的点云属性压缩方案以及图字典学习范式无法充分利用三维点云不规则的信号统计特性和高阶几何结构。在本文中,我们提出了一种新颖的p -拉普拉斯嵌入图字典学习框架,该框架联合利用变化的信号统计特性和高阶几何结构进行三维点云属性压缩。所提出的框架通过p -拉普拉斯嵌入正则化约束来制定一个非凸最小化问题,以学习沿高阶几何结构平滑变化的图字典。利用交替方向乘子法(ADMM)开发了一种高效的交替优化范式来求解非凸最小化问题。据我们所知,本文提出了首个用于点云压缩的图字典学习框架。此外,我们设计了一种高效的分层压缩方案,该方案集成了所提出的框架,以结构化方式利用三维点云的相关性。实验结果表明,所提出的框架在M项逼近和点云属性压缩方面优于基于变换的现有方法,并且性能超过了最近的MPEG G - PCC参考软件。

相似文献

1
3-D Point Cloud Attribute Compression With -Laplacian Embedding Graph Dictionary Learning.
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):975-993. doi: 10.1109/TPAMI.2023.3328377. Epub 2024 Jan 8.
2
Point Cloud Geometry Compression Based on Multi-Layer Residual Structure.
Entropy (Basel). 2022 Nov 17;24(11):1677. doi: 10.3390/e24111677.
3
3D Point Cloud Attribute Compression Using Geometry-Guided Sparse Representation.
IEEE Trans Image Process. 2019 Aug 27. doi: 10.1109/TIP.2019.2936738.
4
Attribute Artifacts Removal for Geometry-Based Point Cloud Compression.
IEEE Trans Image Process. 2022;31:3399-3413. doi: 10.1109/TIP.2022.3170722. Epub 2022 May 11.
5
Inter-Frame Compression for Dynamic Point Cloud Geometry Coding.
IEEE Trans Image Process. 2024;33:584-594. doi: 10.1109/TIP.2023.3343096. Epub 2024 Jan 8.
6
Point Cloud Denoising via Feature Graph Laplacian Regularization.
IEEE Trans Image Process. 2020 Jan 30. doi: 10.1109/TIP.2020.2969052.
7
Perceptually Weighted Rate Distortion Optimization for Video-Based Point Cloud Compression.
IEEE Trans Image Process. 2023;32:5933-5947. doi: 10.1109/TIP.2023.3327003. Epub 2023 Nov 2.
8
A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part I: Geometry.
IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):269-287. doi: 10.1109/TPAMI.2024.3462938. Epub 2024 Dec 4.
9
Graph-Based Compression of Dynamic 3D Point Cloud Sequences.
IEEE Trans Image Process. 2016 Apr;25(4):1765-78. doi: 10.1109/TIP.2016.2529506. Epub 2016 Feb 11.
10
A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part II: Attribute.
IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):252-268. doi: 10.1109/TPAMI.2024.3462945. Epub 2024 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验