Bennett Neal K, Lee Megan, Orr Adam L, Nakamura Ken
Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA.
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815.
bioRxiv. 2023 Oct 18:2023.10.14.562276. doi: 10.1101/2023.10.14.562276.
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS- based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
呼吸链功能障碍会降低三磷酸腺苷(ATP)水平并增加活性氧(ROS)水平。尽管这些代谢参数对广泛的细胞功能和疾病至关重要,但我们对它们如何受到差异调节缺乏综合理解。为了解决这个问题,我们采用了一个基于CRISPR干扰(CRISPRi)和荧光激活细胞分选(FACS)的平台,来比较呼吸基因敲低对ROS的影响与其对ATP的影响。聚焦于已知敲低会降低线粒体源性ATP的基因,我们发现特定呼吸链复合物(I、III和辅酶Q10生物合成)中的基因敲低会增加ROS,而其他导致ATP水平降低的基因敲低要么没有影响(线粒体核糖体蛋白),要么实际上会降低ROS(复合物IV)。此外,尽管改变代谢条件会深刻改变线粒体源性ATP水平,但对线粒体或胞质ROS影响很小。另外,敲低复合物I的一个亚基子集——包括NDUFA8、NDUFB4和NDUFS8——会降低复合物I活性、线粒体源性ATP和超复合物水平,但这些基因的敲低对ROS有不同影响。相反,我们发现醚脂在线粒体ROS水平的动态调节中起着独立于ATP的重要作用。因此,我们的结果确定了细胞ATP和ROS平衡的特定代谢调节因子,这可能有助于剖析这些过程在疾病中的作用,并确定独立针对能量衰竭和氧化应激的治疗策略。