Suppr超能文献

萘基取代杂质诱导高效室温磷光。

Naphthyl Substituted Impurities Induce Efficient Room Temperature Phosphorescence.

作者信息

Qiao Weiguo, Yao Ming, Xu Jingwen, Peng Haiyan, Xia Jianlong, Xie Xiaolin, Li Zhong'an

机构信息

Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.

School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

出版信息

Angew Chem Int Ed Engl. 2023 Dec 11;62(50):e202315911. doi: 10.1002/anie.202315911. Epub 2023 Nov 13.

Abstract

Accidentally, it was found that triphenylamine (TPA) from commercial sources shows ultralong yellow-green room temperature phosphorescence (RTP) like commercial carbazole, which however disappears for lab-synthesized TPA with high purity. Herein, we for the first time identify the impurity types that cause RTP of commercial TPA, which are two N, N-diphenyl-naphthylamine isomers. Due to similar molecular polarity and very trace amount (≈0.8 ‰, molar ratio), these naphthyl substituted impurities can be easily overlooked. We further show that even at an extremely low amount (1000000 : 1, mass ratio) of impurities, RTP emission is still generated, attributed to the triplet-to-triplet energy transfer mechanism. Notably, this doping strategy is also applicable to the triphenylphosphine and benzophenone host systems, of which strong RTP emission can be activated by simply doping the corresponding naphthyl substituted analogues into them. This work therefore provides a general and efficient host/guest strategy toward high performance and diverse organic RTP materials.

摘要

偶然发现,市售的三苯胺(TPA)表现出与市售咔唑类似的超长黄绿光室温磷光(RTP),然而,高纯度的实验室合成TPA却没有这种现象。在此,我们首次确定了导致市售TPA产生RTP的杂质类型,它们是两种N,N - 二苯基萘胺异构体。由于分子极性相似且含量极微(≈0.8‰,摩尔比),这些萘基取代的杂质很容易被忽视。我们进一步表明,即使杂质含量极低(质量比为1000000∶1),仍会产生RTP发射,这归因于三重态 - 三重态能量转移机制。值得注意的是,这种掺杂策略也适用于三苯基膦和二苯甲酮主体体系,只需将相应的萘基取代类似物掺杂到其中,就能激活强烈的RTP发射。因此,这项工作为高性能和多样化的有机RTP材料提供了一种通用且有效的主/客体策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验