IEEE Trans Neural Syst Rehabil Eng. 2023;31:4390-4401. doi: 10.1109/TNSRE.2023.3329059. Epub 2023 Nov 9.
The prevalence of stroke continues to increase with the global aging. Based on the motor imagery (MI) brain-computer interface (BCI) paradigm and virtual reality (VR) technology, we designed and developed an upper-limb rehabilitation exoskeleton system (VR-ULE) in the VR scenes for stroke patients. The VR-ULE system makes use of the MI electroencephalogram (EEG) recognition model with a convolutional neural network and squeeze-and-excitation (SE) blocks to obtain the patient's motion intentions and control the exoskeleton to move during rehabilitation training movement. Due to the individual differences in EEG, the frequency bands with optimal MI EEG features for each patient are different. Therefore, the weight of different feature channels is learned by combining SE blocks to emphasize the useful information frequency band features. The MI cues in the VR-based virtual scenes can improve the interhemispheric balance and the neuroplasticity of patients. It also makes up for the disadvantages of the current MI-BCIs, such as single usage scenarios, poor individual adaptability, and many interfering factors. We designed the offline training experiment to evaluate the feasibility of the EEG recognition strategy, and designed the online control experiment to verify the effectiveness of the VR-ULE system. The results showed that the MI classification method with MI cues in the VR scenes improved the accuracy of MI classification (86.49% ± 3.02%); all subjects performed two types of rehabilitation training tasks under their own models trained in the offline training experiment, with the highest average completion rates of 86.82% ± 4.66% and 88.48% ± 5.84%. The VR-ULE system can efficiently help stroke patients with hemiplegia complete upper-limb rehabilitation training tasks, and provide the new methods and strategies for BCI-based rehabilitation devices.
中风的患病率随着全球人口老龄化而持续增加。基于运动想象(MI)脑机接口(BCI)范式和虚拟现实(VR)技术,我们为中风患者在 VR 场景中设计和开发了一种上肢康复外骨骼系统(VR-ULE)。VR-ULE 系统利用基于卷积神经网络和挤压激励(SE)模块的 MI 脑电图(EEG)识别模型,获取患者的运动意图,并在康复训练运动中控制外骨骼运动。由于 EEG 的个体差异,每个患者具有最佳 MI EEG 特征的频段不同。因此,通过结合 SE 模块来学习不同特征通道的权重,以强调有用的信息频段特征。基于 VR 的虚拟场景中的 MI 线索可以改善患者的大脑半球间平衡和神经可塑性。它还弥补了当前 MI-BCIs 的缺点,如使用场景单一、个体适应性差、干扰因素多等。我们设计了离线训练实验来评估 EEG 识别策略的可行性,并设计了在线控制实验来验证 VR-ULE 系统的有效性。结果表明,在 VR 场景中具有 MI 线索的 MI 分类方法提高了 MI 分类的准确性(86.49%±3.02%);所有受试者在离线训练实验中根据自己的模型进行了两种康复训练任务,完成率最高分别为 86.82%±4.66%和 88.48%±5.84%。VR-ULE 系统可以有效地帮助中风偏瘫患者完成上肢康复训练任务,为基于 BCI 的康复设备提供了新的方法和策略。