Suppr超能文献

神经胶质瘤突触招募适应性可塑性机制。

Glioma synapses recruit mechanisms of adaptive plasticity.

机构信息

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Nature. 2023 Nov;623(7986):366-374. doi: 10.1038/s41586-023-06678-1. Epub 2023 Nov 1.

Abstract

The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. The consequent glioma cell membrane depolarization drives tumour proliferation. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity and strength. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity that contributes to memory and learning in the healthy brain. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.

摘要

神经系统在癌症调控中的作用正日益受到重视。在神经胶质瘤中,神经元活性通过神经黏附素-3 和脑源性神经营养因子(BDNF)等旁分泌信号因子,以及通过 AMPA(α-氨基-3-羟基-5-甲基-4-异恶唑丙酸)受体介导的电生理功能神经元-神经胶质瘤突触,驱动肿瘤进展。由此产生的神经胶质瘤细胞膜去极化驱动肿瘤增殖。在健康的大脑中,BDNF 的活性调节分泌促进突触连接和强度的适应性可塑性。在这里,我们表明恶性突触表现出类似的可塑性,受 BDNF 调节。BDNF 通过原肌球蛋白相关激酶 B(TrkB)向 CAMKII 的信号传导,促进 AMPA 受体向神经胶质瘤细胞膜的贩运,导致恶性细胞中谷氨酸诱发电流的幅度增加。将神经胶质瘤突触强度的可塑性与肿瘤生长联系起来,对神经胶质瘤膜电位的分级光遗传学控制表明,更大的去极化电流幅度促进了神经胶质瘤增殖的增加。这种恶性突触强度的增强与有助于健康大脑中记忆和学习的突触可塑性具有机制特征。BDNF-TrkB 信号传导还调节神经元-神经胶质瘤突触的数量。从大脑微环境中消除活性调节的 BDNF 分泌或丧失神经胶质瘤 TrkB 表达会强烈抑制肿瘤进展。通过遗传或药理学阻断 TrkB 会消除 BDNF 对神经胶质瘤突触的这些影响,并大大延长小儿神经胶质瘤和弥漫性内在脑桥神经胶质瘤异种移植模型的存活时间。总之,这些发现表明 BDNF-TrkB 信号传导促进恶性突触可塑性并增强肿瘤进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a313/10632140/cc1aec07d766/41586_2023_6678_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验