Suppr超能文献

基于微博数据的主题建模和情感分析:以甲型流感为例探讨 COVID-19 大流行后人们对大规模传染病的时间和情感变化

Temporal and Emotional Variations in People's Perceptions of Mass Epidemic Infectious Disease After the COVID-19 Pandemic Using Influenza A as an Example: Topic Modeling and Sentiment Analysis Based on Weibo Data.

机构信息

Kunming University of Science and Technology, Kunming, China.

The First People's Hospital of Yunnan Province, Kunimg, China.

出版信息

J Med Internet Res. 2023 Nov 2;25:e49300. doi: 10.2196/49300.

Abstract

BACKGROUND

The COVID-19 pandemic has had profound impacts on society, including public health, the economy, daily life, and social interactions. Social distancing measures, travel restrictions, and the influx of pandemic-related information on social media have all led to a significant shift in how individuals perceive and respond to health crises. In this context, there is a growing awareness of the role that social media platforms such as Weibo, among the largest and most influential social media sites in China, play in shaping public sentiment and influencing people's behavior during public health emergencies.

OBJECTIVE

This study aims to gain a comprehensive understanding of the sociospatial impact of mass epidemic infectious disease by analyzing the spatiotemporal variations and emotional orientations of the public after the COVID-19 pandemic. We use the outbreak of influenza A after the COVID-19 pandemic as a case study. Through temporal and spatial analyses, we aim to uncover specific variations in the attention and emotional orientations of people living in different provinces in China regarding influenza A. We sought to understand the societal impact of large-scale infectious diseases and the public's stance after the COVID-19 pandemic to improve public health policies and communication strategies.

METHODS

We selected Weibo as the data source and collected all influenza A-related Weibo posts from November 1, 2022, to March 31, 2023. These data included user names, geographic locations, posting times, content, repost counts, comments, likes, user types, and more. Subsequently, we used latent Dirichlet allocation topic modeling to analyze the public's focus as well as the bidirectional long short-term memory model to conduct emotional analysis. We further classified the focus areas and emotional orientations of different regions.

RESULTS

The research findings indicate that, compared with China's western provinces, the eastern provinces exhibited a higher volume of Weibo posts, demonstrating a greater interest in influenza A. Moreover, inland provinces displayed elevated levels of concern compared with coastal regions. In addition, female users of Weibo exhibited a higher level of engagement than male users, with regular users comprising the majority of user types. The public's focus was categorized into 23 main themes, with the overall emotional sentiment predominantly leaning toward negativity (making up 7562 out of 9111 [83%] sentiments).

CONCLUSIONS

The results of this study underscore the profound societal impact of the COVID-19 pandemic. People tend to be pessimistic toward new large-scale infectious diseases, and disparities exist in the levels of concern and emotional sentiments across different regions. This reflects diverse societal responses to health crises. By gaining an in-depth understanding of the public's attitudes and focal points regarding these infectious diseases, governments and decision makers can better formulate policies and action plans to cater to the specific needs of different regions and enhance public health awareness.

摘要

背景

新冠疫情对社会产生了深远影响,包括公共卫生、经济、日常生活和社会交往等方面。社交距离措施、旅行限制以及社交媒体上大量与疫情相关的信息涌入,都导致人们对健康危机的看法和应对方式发生了重大转变。在这种背景下,人们越来越意识到微博等社交媒体平台在中国是最大、最有影响力的社交媒体网站之一,在塑造公众情绪和影响公众在公共卫生突发事件中的行为方面发挥了重要作用。

目的

本研究旨在通过分析新冠疫情后公众的时空变化和情绪倾向,全面了解重大传染病的社会空间影响。我们以新冠疫情后的甲型流感疫情爆发为例,通过时空分析,揭示中国不同省份人群对甲型流感关注度和情绪倾向的具体变化。我们旨在了解大规模传染病对社会的影响以及新冠疫情后公众的立场,以改善公共卫生政策和沟通策略。

方法

我们选择微博作为数据源,收集了 2022 年 11 月 1 日至 2023 年 3 月 31 日期间所有与甲型流感相关的微博帖子。这些数据包括用户名、地理位置、发布时间、内容、转发次数、评论、点赞、用户类型等。随后,我们使用潜在狄利克雷分配主题建模分析公众的关注点,以及双向长短期记忆模型进行情绪分析。我们进一步对不同地区的关注点和情绪倾向进行分类。

结果

研究结果表明,与中国西部省份相比,东部省份的微博帖子数量较多,对甲型流感的关注度较高。此外,内陆省份的关注度高于沿海地区。此外,微博女性用户的参与度高于男性用户,普通用户是用户类型的主流。公众的关注点分为 23 个主要主题,整体情绪倾向于负面(9111 个情绪中有 7562 个[83%]是负面)。

结论

本研究结果强调了新冠疫情对社会的深远影响。人们对新的大规模传染病往往持悲观态度,不同地区的关注度和情绪情绪存在差异,这反映了社会对健康危机的不同反应。通过深入了解公众对这些传染病的态度和关注点,政府和决策者可以更好地制定政策和行动计划,以满足不同地区的具体需求,提高公众的健康意识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/10654902/a4cc877ab6b7/jmir_v25i1e49300_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验