Suppr超能文献

最优助推认知受限主体:用于建模、预测和控制选择架构影响的框架。

Optimal nudging for cognitively bounded agents: A framework for modeling, predicting, and controlling the effects of choice architectures.

机构信息

Department of Psychology, Princeton University.

出版信息

Psychol Rev. 2023 Nov;130(6):1457-1491. doi: 10.1037/rev0000445. Epub 2023 Nov 2.

Abstract

People's decisions often deviate from classical notions of rationality, incurring costs to themselves and society. One way to reduce the costs of poor decisions is to redesign the decision problems people face to encourage better choices. While often subtle, these can have dramatic effects on behavior and are increasingly popular in public policy, health care, and marketing. Although nudges are often designed with psychological theories in mind, they are typically not formalized in computational terms and their effects can be hard to predict. As a result, designing nudges can be difficult and time-consuming. To address this challenge, we propose a computational framework for understanding and predicting the effects of nudges. Our approach builds on recent work modeling human decision making as adaptive use of limited cognitive resources, an approach called resource-rational analysis. In our framework, nudges change the problem the agent faces-that is, the problem of how to make a decision. This changes the optimal sequence of cognitive operations an agent should execute, which in turn influences their behavior. We show that models based on this framework can account for known effects of nudges based on default options, suggested alternatives, and information highlighting. In each case, we validate the model's predictions in an experimental process-tracing paradigm. We then show how the framework can be used to automatically construct optimal nudges, and demonstrate that these nudges improve people's decisions more than intuitive heuristic approaches. Overall, our results show that resource-rational analysis is a promising framework for formally characterizing and constructing nudges. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

人们的决策往往偏离经典的理性概念,给自己和社会带来成本。减少决策失误成本的一种方法是重新设计人们面临的决策问题,以鼓励更好的选择。虽然这些细微差别通常很微妙,但它们对行为有巨大影响,并且在公共政策、医疗保健和营销领域越来越受欢迎。尽管这些提示通常是基于心理学理论设计的,但它们通常没有以计算术语形式化,并且它们的效果难以预测。因此,设计提示可能很困难且耗时。为了解决这个挑战,我们提出了一个用于理解和预测提示效果的计算框架。我们的方法建立在最近将人类决策建模为对有限认知资源的自适应使用的工作基础上,这一方法称为资源理性分析。在我们的框架中,提示改变了代理人面临的问题,即如何做出决策的问题。这改变了代理人应该执行的最佳认知操作序列,进而影响他们的行为。我们表明,基于此框架的模型可以解释基于默认选项、建议的替代方案和信息突出显示的提示的已知效果。在每种情况下,我们都在实验过程追踪范式中验证了模型的预测。然后,我们展示了如何使用该框架自动构建最佳提示,并且证明这些提示比直觉启发式方法更能改善人们的决策。总体而言,我们的结果表明,资源理性分析是正式描述和构建提示的有前途的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验