Suppr超能文献

新兴碳捕获技术方向:高通量理论计算与机器学习的协同作用。

Emerging Directions for Carbon Capture Technologies: A Synergy of High-Throughput Theoretical Calculations and Machine Learning.

机构信息

Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.

出版信息

Environ Sci Technol. 2023 Nov 14;57(45):17189-17200. doi: 10.1021/acs.est.3c05305. Epub 2023 Nov 2.

Abstract

As the world grapples with the challenges of energy transition and industrial decarbonization, the development of carbon capture technologies presents a promising solution. The Scalable Modeling, Artificial Intelligence (AI), and Rapid Theoretical calculations, referred as SMART here, is an interdisciplinary approach that combines high-throughput calculation and data-driven modeling with expertise from chemical, materials, environmental, computer and data science and engineering, leading to the development of advanced capabilities in simulating and optimizing carbon capture processes. This perspective discusses the state-of-the-art material discovery research enabled by high-throughput calculation and data-driven modeling. Further, we propose a framework for material discovery, and illustrate the synergies among deep learning models, pretrained models, and comprehensive data sets, emerging as a robust framework for data-driven design and development in carbon capture. In essence, the adoption of the SMART approach promises a revolutionary impact on efforts in energy transition and industrial decarbonization.

摘要

随着世界应对能源转型和工业脱碳的挑战,碳捕获技术的发展提供了一个有前途的解决方案。可扩展建模、人工智能(AI)和快速理论计算,简称 SMART,是一种跨学科的方法,它将高通量计算和数据驱动建模与化学、材料、环境、计算机和数据科学与工程的专业知识相结合,从而开发出模拟和优化碳捕获过程的先进能力。本文讨论了高通量计算和数据驱动建模所支持的最新材料发现研究。此外,我们提出了一种材料发现框架,并说明了深度学习模型、预训练模型和综合数据集之间的协同作用,这是碳捕获中数据驱动设计和开发的强大框架。从本质上讲,采用 SMART 方法有望对能源转型和工业脱碳的努力产生革命性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验