Suppr超能文献

递归梅特罗波利斯-黑斯廷斯命名博弈:基于概率生成模型的多智能体系统中的符号涌现

Recursive Metropolis-Hastings naming game: symbol emergence in a multi-agent system based on probabilistic generative models.

作者信息

Inukai Jun, Taniguchi Tadahiro, Taniguchi Akira, Hagiwara Yoshinobu

机构信息

Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan.

Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan.

出版信息

Front Artif Intell. 2023 Oct 18;6:1229127. doi: 10.3389/frai.2023.1229127. eCollection 2023.

Abstract

In the studies on symbol emergence and emergent communication in a population of agents, a computational model was employed in which agents participate in various language games. Among these, the Metropolis-Hastings naming game (MHNG) possesses a notable mathematical property: symbol emergence through MHNG is proven to be a decentralized Bayesian inference of representations shared by the agents. However, the previously proposed MHNG is limited to a two-agent scenario. This paper extends MHNG to an -agent scenario. The main contributions of this paper are twofold: (1) we propose the recursive Metropolis-Hastings naming game (RMHNG) as an -agent version of MHNG and demonstrate that RMHNG is an approximate Bayesian inference method for the posterior distribution over a latent variable shared by agents, similar to MHNG; and (2) we empirically evaluate the performance of RMHNG on synthetic and real image data, i.e., YCB object dataset, enabling multiple agents to develop and share a symbol system. Furthermore, we introduce two types of approximations-one-sample and limited-length-to reduce computational complexity while maintaining the ability to explain communication in a population of agents. The experimental findings showcased the efficacy of RMHNG as a decentralized Bayesian inference for approximating the posterior distribution concerning latent variables, which are jointly shared among agents, akin to MHNG, although the improvement in ARI and coefficient is smaller in the real image dataset condition. Moreover, the utilization of RMHNG elucidated the agents' capacity to exchange symbols. Furthermore, the study discovered that even the computationally simplified version of RMHNG could enable symbols to emerge among the agents.

摘要

在关于智能体群体中符号出现和涌现式通信的研究中,采用了一种计算模型,其中智能体参与各种语言游戏。其中, metropolis - hastings命名游戏(MHNG)具有一个显著的数学特性:通过MHNG实现的符号出现被证明是智能体共享表示的一种去中心化贝叶斯推理。然而,先前提出的MHNG仅限于双智能体场景。本文将MHNG扩展到多智能体场景。本文的主要贡献有两个方面:(1)我们提出递归 metropolis - hastings命名游戏(RMHNG)作为MHNG的多智能体版本,并证明RMHNG是一种用于智能体共享的潜在变量后验分布的近似贝叶斯推理方法,类似于MHNG;(2)我们通过合成图像数据和真实图像数据(即YCB物体数据集)对RMHNG的性能进行了实证评估,使多个智能体能够开发和共享一个符号系统。此外,我们引入了两种近似方法——单样本近似和有限长度近似——以降低计算复杂度,同时保持解释智能体群体中通信的能力。实验结果表明,RMHNG作为一种去中心化贝叶斯推理方法,对于近似智能体共同共享的潜在变量的后验分布是有效的,类似于MHNG,尽管在真实图像数据集条件下,ARI和系数的提升较小。此外,RMHNG的应用阐明了智能体交换符号的能力。此外,研究发现,即使是计算简化版的RMHNG也能使智能体之间出现符号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfa/10619661/d2af0348cf8a/frai-06-1229127-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验