Water Resources Institute, 8 Phao Dai Lang, Dong Da, Hanoi, 10000, Vietnam.
Thuyloi University, 175 Tay Son, Dong Da, HaNoi, 10000, Vietnam.
Environ Monit Assess. 2023 Nov 4;195(12):1415. doi: 10.1007/s10661-023-11947-7.
Saltwater intrusion has become one of the most concerning issues in the Vietnamese Mekong Delta (VMD) due to its increasing impacts on agriculture and food security of Vietnam. Reliable estimation of salinity plays a crucial role to mitigate the impacts of saltwater intrusion. This study developed a hybrid technique that merges satellite imagery with numerical simulations to improve the estimation of salinity in the VMD. The salinity derived from Landsat images and by numerical simulations was fused using the Bayesian inference technique. The results indicate that our technique significantly reduces the uncertainties and improves the accuracy of salinity estimates. The Nash-Sutcliffe coefficient is 0.74, which is much higher than that of numerical simulation (0.63) and Landsat estimation (0.6). The correlation coefficient between the ensemble and measured salinity is relatively high (0.88). The variance of the ensemble salinity errors (5.0 ppt) is lower than that of Landsat estimation (10.4 ppt) and numerical simulations (9.6 ppt). The proposed approach shows a great potential to combine multiple data sources of a variable of interest to improve its accuracy and reliability wherever these data are available.
由于盐水入侵对越南湄公河三角洲(VMD)的农业和粮食安全的影响越来越大,盐水入侵已成为该地区最令人关注的问题之一。可靠的盐度估计对于减轻盐水入侵的影响至关重要。本研究开发了一种混合技术,将卫星图像与数值模拟相结合,以提高 VMD 中盐度的估计。使用贝叶斯推理技术融合了来自 Landsat 图像和数值模拟的盐度。结果表明,我们的技术显著降低了不确定性并提高了盐度估计的准确性。纳什-苏特克里夫系数为 0.74,远高于数值模拟(0.63)和 Landsat 估计(0.6)。集合和实测盐度之间的相关系数相对较高(0.88)。集合盐度误差的方差(5.0 ppt)低于 Landsat 估计(10.4 ppt)和数值模拟(9.6 ppt)。该方法具有很大的潜力,可以结合感兴趣变量的多个数据源来提高其准确性和可靠性,只要这些数据可用。