Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA.
Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
Nat Commun. 2023 Nov 4;14(1):7074. doi: 10.1038/s41467-023-41743-3.
Two facts about cortex are widely accepted: neuronal responses show large spiking variability with near Poisson statistics and cortical circuits feature abundant recurrent connections between neurons. How these spiking and circuit properties combine to support sensory representation and information processing is not well understood. We build a theoretical framework showing that these two ubiquitous features of cortex combine to produce optimal sampling-based Bayesian inference. Recurrent connections store an internal model of the external world, and Poissonian variability of spike responses drives flexible sampling from the posterior stimulus distributions obtained by combining feedforward and recurrent neuronal inputs. We illustrate how this framework for sampling-based inference can be used by cortex to represent latent multivariate stimuli organized either hierarchically or in parallel. A neural signature of such network sampling are internally generated differential correlations whose amplitude is determined by the prior stored in the circuit, which provides an experimentally testable prediction for our framework.
神经元的反应表现出具有接近泊松统计的大量尖峰变异性,并且皮层电路在神经元之间具有丰富的递归连接。这些尖峰和电路特性如何结合起来支持感觉表示和信息处理还不是很清楚。我们建立了一个理论框架,表明皮层的这两个普遍特征结合起来可以产生最优的基于采样的贝叶斯推理。递归连接存储外部世界的内部模型,而尖峰反应的泊松变异性则从通过前馈和递归神经元输入组合得到的后验刺激分布中驱动灵活的采样。我们说明了这种基于采样的推理框架如何被皮层用来表示以层次结构或并行方式组织的潜在多元刺激。这种网络采样的神经特征是内部产生的差分相关,其幅度由电路中存储的先验决定,这为我们的框架提供了一个可实验验证的预测。