Suppr超能文献

用于预测脑肿瘤调强放疗中三维剂量分布的深度神经网络方法。

Deep-neural network approaches for predicting 3D dose distribution in intensity-modulated radiotherapy of the brain tumors.

作者信息

Irannejad Maziar, Abedi Iraj, Lonbani Vida Darbaghi, Hassanvand Maryam

机构信息

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Medical Physics Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

J Appl Clin Med Phys. 2024 Mar;25(3):e14197. doi: 10.1002/acm2.14197. Epub 2023 Nov 7.

Abstract

PURPOSE

The aim of this study is to reduce treatment planning time by predicting the intensity-modulated radiotherapy 3D dose distribution using deep learning for brain cancer patients. "For this purpose, two different approaches in dose prediction, i.e., first only planning target volume (PTV) and second PTV with organs at risk (OARs) as input of the U-net model, are employed and their results are compared."

METHODS AND MATERIALS

The data of 99 patients with glioma tumors referred for IMRT treatment were used so that the images of 90 patients were regarded as training datasets and the others were for the test. All patients were manually planned and treated with sixth-field IMRT; the photon energy was 6MV. The treatment plans were done with the Collapsed Cone Convolution algorithm to deliver 60 Gy in 30 fractions.

RESULTS

The obtained accuracy and similarity for the proposed methods in dose prediction when compared to the clinical dose distributions on test patients according to MSE, dice metric and SSIM for the Only-PTV and PTV-OARs methods are on average (0.05, 0.851, 0.83) and (0.056, 0.842, 0.82) respectively. Also, dose prediction is done in an extremely short time.

CONCLUSION

The same results of the two proposed methods prove that the presence of OARs in addition to PTV does not provide new knowledge to the network and only by defining the PTV and its location in the imaging slices, does the dose distribution become predictable. Therefore, the Only-PTV method by eliminating the process of introducing OARs can reduce the overall designing time of treatment by IMRT in patients with glioma tumors.

摘要

目的

本研究的目的是通过使用深度学习预测脑癌患者的调强放射治疗三维剂量分布来减少治疗计划时间。“为此,采用了两种不同的剂量预测方法,即第一种仅将计划靶区(PTV)作为输入,第二种将PTV和危及器官(OARs)作为U-net模型的输入,并比较它们的结果。”

方法和材料

使用了99例接受调强放射治疗的胶质瘤患者的数据,其中90例患者的图像被视为训练数据集,其余患者的图像用于测试。所有患者均采用手动计划并接受六野调强放射治疗;光子能量为6MV。治疗计划采用坍缩圆锥卷积算法,分30次给予60Gy剂量。

结果

根据均方误差(MSE)、骰子系数(dice metric)和结构相似性指数(SSIM),将所提出的方法与测试患者的临床剂量分布进行比较时,仅PTV方法和PTV-OARs方法在剂量预测方面获得的平均准确率和相似度分别为(0.05, 0.851, 0.83)和(0.056, 0.842, 0.82)。此外,剂量预测在极短的时间内完成。

结论

所提出的两种方法的相同结果证明,除了PTV之外,OARs的存在并没有为网络提供新的信息,仅通过定义PTV及其在成像切片中的位置,剂量分布就变得可预测。因此,仅PTV方法通过消除引入OARs的过程,可以减少胶质瘤患者调强放射治疗的总体设计时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d6/10962483/c8ea008528e5/ACM2-25-e14197-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验