Suppr超能文献

用于帮助严重自发性脑出血治疗决策的决策树模型。

A decision tree model to help treatment decision-making for severe spontaneous intracerebral hemorrhage.

机构信息

Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases.

Department of Neurosurgery and Emergency Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, People's Republic of China.

出版信息

Int J Surg. 2024 Feb 1;110(2):788-798. doi: 10.1097/JS9.0000000000000852.

Abstract

BACKGROUND

Surgical treatment demonstrated a reduction in mortality among patients suffering from severe spontaneous intracerebral hemorrhage (SSICH). However, which SSICH patients could benefit from surgical treatment was unclear. This study aimed to establish and validate a decision tree (DT) model to help determine which SSICH patients could benefit from surgical treatment.

MATERIALS AND METHODS

SSICH patients from a prospective, multicenter cohort study were analyzed retrospectively. The primary outcome was the incidence of neurological poor outcome (modified Rankin scale as 4-6) on the 180th day posthemorrhage. Then, surgically-treated SSICH patients were set as the derivation cohort (from a referring hospital) and validation cohort (from multiple hospitals). A DT model to evaluate the risk of 180-day poor outcome was developed within the derivation cohort and validated within the validation cohort. The performance of clinicians in identifying patients with poor outcome before and after the help of the DT model was compared using the area under curve (AUC).

RESULTS

One thousand two hundred sixty SSICH patients were included in this study (middle age as 56, and 984 male patients). Surgically-treated patients had a lower incidence of 180-day poor outcome compared to conservatively-treated patients (147/794 vs. 128/466, P <0.001). Based on 794 surgically-treated patients, multivariate logistic analysis revealed the ischemic cerebro-cardiovascular disease history, renal dysfunction, dual antiplatelet therapy, hematoma volume, and Glasgow coma score at admission as poor outcome factors. The DT model, incorporating these above factors, was highly predictive of 180-day poor outcome within the derivation cohort (AUC, 0.94) and validation cohort (AUC, 0.92). Within 794 surgically-treated patients, the DT improved junior clinicians' performance to identify patients at risk for poor outcomes (AUC from 0.81 to 0.89, P <0.001).

CONCLUSIONS

This study provided a DT model for predicting the poor outcome of SSICH patients postsurgically, which may serve as a useful tool assisting clinicians in treatment decision-making for SSICH.

摘要

背景

手术治疗可降低患有严重自发性脑出血(SSICH)患者的死亡率。然而,哪些 SSICH 患者可以从手术治疗中获益尚不清楚。本研究旨在建立和验证决策树(DT)模型,以帮助确定哪些 SSICH 患者可以从手术治疗中获益。

材料和方法

回顾性分析来自前瞻性、多中心队列研究的 SSICH 患者。主要结局是出血后 180 天的神经不良预后发生率(改良 Rankin 量表为 4-6)。然后,将接受手术治疗的 SSICH 患者设为推导队列(来自一家转诊医院)和验证队列(来自多家医院)。在推导队列中建立了评估 180 天不良预后风险的 DT 模型,并在验证队列中进行了验证。使用曲线下面积(AUC)比较了在 DT 模型帮助下,医生在识别不良预后患者前后的表现。

结果

本研究纳入了 1260 例 SSICH 患者(中位年龄为 56 岁,984 例为男性)。与保守治疗组相比,接受手术治疗的患者 180 天不良预后发生率较低(147/794 例比 128/466 例,P <0.001)。基于 794 例接受手术治疗的患者,多变量 logistic 分析显示,缺血性脑心脑血管疾病史、肾功能不全、双联抗血小板治疗、血肿量和入院时格拉斯哥昏迷评分是不良预后的因素。该 DT 模型纳入了上述因素,对推导队列(AUC 为 0.94)和验证队列(AUC 为 0.92)的 180 天不良预后具有高度预测性。在 794 例接受手术治疗的患者中,DT 提高了初级医生识别不良预后风险患者的能力(AUC 从 0.81 提高到 0.89,P <0.001)。

结论

本研究提供了一种预测 SSICH 患者手术后不良预后的 DT 模型,可作为辅助医生治疗 SSICH 决策的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa42/10871581/bd41634d06fd/js9-110-0788-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验