Suppr超能文献

基于人工智能的复发预测在肺腺癌活检中优于传统组织病理学方法。

Artificial intelligence-based recurrence prediction outperforms classical histopathological methods in pulmonary adenocarcinoma biopsies.

作者信息

Akram F, Wolf J L, Trandafir T E, Dingemans Anne-Marie C, Stubbs A P, von der Thüsen J H

机构信息

Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands.

Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.

出版信息

Lung Cancer. 2023 Dec;186:107413. doi: 10.1016/j.lungcan.2023.107413. Epub 2023 Nov 4.

Abstract

INTRODUCTION

Between 10 and 50% of early-stage lung adenocarcinoma patients experience local or distant recurrence. Histological parameters such as a solid or micropapillary growth pattern are well-described risk factors for recurrence. However, not every patient presenting with such a pattern will develop recurrence. Designing a model which can more accurately predict recurrence on small biopsy samples can aid the stratification of patients for surgery, (neo-)adjuvant therapy, and follow-up.

MATERIAL AND METHODS

In this study, a statistical model on biopsies fed with histological data from early and advanced-stage lung adenocarcinomas was developed to predict recurrence after surgical resection. Additionally, a convolutional neural network (CNN)-based artificial intelligence (AI) classification model, named AI-based Lung Adenocarcinoma Recurrence Predictor (AILARP), was trained to predict recurrence, with an ImageNet pre-trained EfficientNet that was fine-tuned on lung adenocarcinoma biopsies using transfer learning. Both models were validated using the same biopsy dataset to ensure that an accurate comparison was demonstrated.

RESULTS

The statistical model had an accuracy of 0.49 for all patients when using histology data only. The AI classification model yielded a test accuracy of 0.70 and 0.82 and an area under the curve (AUC) of 0.74 and 0.87 on patch-wise and patient-wise hematoxylin and eosin (H&E) stained whole slide images (WSIs), respectively.

CONCLUSION

AI classification outperformed the traditional clinical approach for recurrence prediction on biopsies by a fair margin. The AI classifier may stratify patients according to their recurrence risk, based only on small biopsies. This model warrants validation in a larger lung biopsy cohort.

摘要

引言

10%至50%的早期肺腺癌患者会出现局部或远处复发。实性或微乳头生长模式等组织学参数是已明确描述的复发风险因素。然而,并非每个具有这种模式的患者都会复发。设计一个能够更准确地预测小活检样本复发情况的模型,有助于对患者进行手术、(新)辅助治疗及随访的分层。

材料与方法

在本研究中,开发了一个基于早期和晚期肺腺癌组织学数据的活检统计模型,以预测手术切除后的复发情况。此外,还训练了一个基于卷积神经网络(CNN)的人工智能(AI)分类模型,名为基于AI的肺腺癌复发预测器(AILARP),使用在ImageNet上预训练的EfficientNet,通过迁移学习在肺腺癌活检样本上进行微调来预测复发。两个模型均使用相同的活检数据集进行验证,以确保能进行准确比较。

结果

仅使用组织学数据时,统计模型对所有患者的准确率为0.49。AI分类模型在逐块和逐患者苏木精和伊红(H&E)染色的全切片图像(WSIs)上的测试准确率分别为0.70和0.82,曲线下面积(AUC)分别为0.74和0.87。

结论

在活检复发预测方面,AI分类明显优于传统临床方法。AI分类器仅基于小活检样本,就可根据患者的复发风险进行分层。该模型有待在更大的肺活检队列中进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验