Suppr超能文献

通用人工智能的能源挑战。

The energy challenges of artificial superintelligence.

作者信息

Stiefel Klaus M, Coggan Jay S

机构信息

NeuroLinx Research Institute, La Jolla, CA, United States.

出版信息

Front Artif Intell. 2023 Oct 24;6:1240653. doi: 10.3389/frai.2023.1240653. eCollection 2023.

Abstract

We argue here that contemporary semiconductor computing technology poses a significant if not insurmountable barrier to the emergence of any artificial general intelligence system, let alone one anticipated by many to be "superintelligent". This limit on artificial superintelligence (ASI) emerges from the energy requirements of a system that would be more intelligent but orders of magnitude less efficient in energy use than human brains. An ASI would have to supersede not only a single brain but a large population given the effects of collective behavior on the advancement of societies, further multiplying the energy requirement. A hypothetical ASI would likely consume orders of magnitude more energy than what is available in highly-industrialized nations. We estimate the energy use of ASI with an equation we term the "Erasi equation", for the nergy equirement for rtificial uperntelligence. Additional efficiency consequences will emerge from the current unfocussed and scattered developmental trajectory of AI research. Taken together, these arguments suggest that the emergence of an ASI is highly unlikely in the foreseeable future based on current computer architectures, primarily due to energy constraints, with biomimicry or other new technologies being possible solutions.

摘要

我们在此认为,当代半导体计算技术对任何通用人工智能系统的出现构成了重大障碍,即便不是无法逾越的障碍,更不用说许多人所预期的“超级智能”系统了。这种对通用人工智能(ASI)的限制源于一个系统的能量需求,该系统虽然更智能,但在能源利用效率上却比人类大脑低几个数量级。考虑到集体行为对社会进步的影响,一个通用人工智能不仅要超越单个大脑,还得超越大量人群,这进一步增加了能量需求。一个假设的通用人工智能可能消耗的能量比高度工业化国家可利用的能量多几个数量级。我们用一个我们称为“Erasi方程”的公式来估算通用人工智能的能量使用,即人工智能的能量需求方程。人工智能研究目前无重点且分散的发展轨迹还会带来其他效率方面的后果。综合来看,这些观点表明,基于当前的计算机架构,在可预见的未来,通用人工智能极不可能出现,主要原因是能量限制,而仿生学或其他新技术可能是解决之道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb68/10629395/00bfb58412d5/frai-06-1240653-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验