Suppr超能文献

急性脑卒中患者深静脉血栓形成的风险预测模型:系统评价和荟萃分析。

Risk prediction models for deep venous thrombosis in patients with acute stroke: A systematic review and meta-analysis.

机构信息

College of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

出版信息

Int J Nurs Stud. 2024 Jan;149:104623. doi: 10.1016/j.ijnurstu.2023.104623. Epub 2023 Oct 19.

Abstract

BACKGROUND

The number of risk prediction models for deep venous thrombosis (DVT) in patients with acute stroke is increasing, while the quality and applicability of these models in clinical practice and future research remain unknown.

OBJECTIVE

To systematically review published studies on risk prediction models for DVT in patients with acute stroke.

DESIGN

Systematic review and meta-analysis of observational studies.

METHODS

China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), SinoMed, PubMed, Web of Science, The Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Embase were searched from inception to November 7, 2022. Data from selected studies were extracted, including study design, data source, outcome definition, sample size, predictors, model development and performance. The Prediction Model Risk of Bias Assessment Tool (PROBAST) checklist was used to assess the risk of bias and applicability.

RESULTS

A total of 940 studies were retrieved, and after the selection process, nine prediction models from nine studies were included in this review. All studies utilized logistic regression to establish DVT risk prediction models. The incidence of DVT in patients with acute stroke ranged from 0.4 % to 28 %. The most frequently used predictors were D-dimer and age. The reported area under the curve (AUC) ranged from 0.70 to 0.912. All studies were found to have a high risk of bias, primarily due to inappropriate data sources and poor reporting of the analysis domain. The pooled AUC value of the five validated models was 0.76 (95 % confidence interval: 0.70-0.81), indicating a fair level of discrimination.

CONCLUSION

Although the included studies reported a certain level of discrimination in the prediction models of DVT in patients with acute stroke, all of them were found to have a high risk of bias according to the PROBAST checklist. Future studies should focus on developing new models with larger samples, rigorous study designs, and multicenter external validation.

REGISTRATION

The protocol for this study is registered with PROSPERO (registration number: CRD42022370287).

摘要

背景

目前针对急性脑卒中患者深静脉血栓形成(DVT)的风险预测模型数量不断增加,但这些模型在临床实践和未来研究中的质量和适用性仍不清楚。

目的

系统评价发表的关于急性脑卒中患者 DVT 风险预测模型的研究。

设计

对观察性研究的系统评价和荟萃分析。

方法

检索中国知网(CNKI)、万方数据库、中国科技期刊数据库(VIP)、中国生物医学文献数据库(SinoMed)、PubMed、Web of Science、The Cochrane Library、护理学文献累积索引(CINAHL)和 Embase 自成立至 2022 年 11 月 7 日的文献。提取纳入研究的设计类型、数据来源、结局定义、样本量、预测因素、模型建立和性能等数据。使用预测模型风险偏倚评估工具(PROBAST)清单评估风险偏倚和适用性。

结果

共检索到 940 篇文献,经过筛选过程,纳入本综述的 9 项研究来自 9 项研究,均采用逻辑回归建立 DVT 风险预测模型。急性脑卒中患者 DVT 的发生率为 0.4%28%。最常使用的预测因素是 D-二聚体和年龄。报告的曲线下面积(AUC)范围为 0.700.912。所有研究均被认为存在较高的偏倚风险,主要原因是数据来源不当和分析域报告不佳。5 个验证模型的汇总 AUC 值为 0.76(95%置信区间:0.70~0.81),表明具有一定的区分度。

结论

尽管纳入的研究报告了急性脑卒中患者 DVT 预测模型具有一定的区分度,但根据 PROBAST 清单,所有研究均存在较高的偏倚风险。未来的研究应侧重于开发具有更大样本量、严谨研究设计和多中心外部验证的新模型。

注册

本研究的方案已在 PROSPERO 注册(注册号:CRD42022370287)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验