Suppr超能文献

美国与 COVID-19 相关的公共卫生政策、政治意识形态和公众情绪

Public Health Policy, Political Ideology, and Public Emotion Related to COVID-19 in the U.S.

机构信息

Department of Management, Policy and Community Health, School of Public Health, The University of Texas Health Science Center at Houston (UTHealth Houston), El Paso, TX 79905, USA.

College of Health Sciences, The University of North Carolina at Pembroke, Pembroke, NC 28372, USA.

出版信息

Int J Environ Res Public Health. 2023 Oct 29;20(21):6993. doi: 10.3390/ijerph20216993.

Abstract

Social networks, particularly Twitter 9.0 (known as X as of 23 July 2023), have provided an avenue for prompt interactions and sharing public health-related concerns and emotions, especially during the COVID-19 pandemic when in-person communication became less feasible due to stay-at-home policies in the United States (U.S.). The study of public emotions extracted from social network data has garnered increasing attention among scholars due to its significant predictive value for public behaviors and opinions. However, few studies have explored the associations between public health policies, local political ideology, and the spatial-temporal trends of emotions extracted from social networks. This study aims to investigate (1) the spatial-temporal clustering trends (or spillover effects) of negative emotions related to COVID-19; and (2) the association relationships between public health policies such as stay-at-home policies, political ideology, and the negative emotions related to COVID-19. This study employs multiple statistical methods (zero-inflated Poisson (ZIP) regression, random-effects model, and spatial autoregression (SAR) model) to examine relationships at the county level by using the data merged from multiple sources, mainly including Twitter 9.0, Johns Hopkins, and the U.S. Census Bureau. We find that negative emotions related to COVID-19 extracted from Twitter 9.0 exhibit spillover effects, with counties implementing stay-at-home policies or leaning predominantly Democratic showing higher levels of observed negative emotions related to COVID-19. These findings highlight the impact of public health policies and political polarization on spatial-temporal public emotions exhibited in social media. Scholars and policymakers can benefit from understanding how public policies and political ideology impact public emotions to inform and enhance their communication strategies and intervention design during public health crises such as the COVID-19 pandemic.

摘要

社交网络,特别是 Twitter 9.0(截至 2023 年 7 月 23 日更名为 X),为及时互动和分享公共卫生相关问题和情绪提供了途径,尤其是在 COVID-19 大流行期间,由于留在家中的政策,面对面交流变得不太可行。由于社交网络数据中提取的公共情绪具有对公共行为和意见的重要预测价值,因此越来越多的学者开始关注从社交网络数据中提取的公共情绪研究。然而,很少有研究探讨公共卫生政策、地方政治意识形态与从社交网络中提取的情绪的时空趋势之间的关联。本研究旨在调查:(1)与 COVID-19 相关的负面情绪的时空聚类趋势(或溢出效应);以及 (2)与 COVID-19 相关的负面情绪与留在家中的政策等公共卫生政策、政治意识形态之间的关联关系。本研究采用多种统计方法(零膨胀泊松 (ZIP) 回归、随机效应模型和空间自回归 (SAR) 模型),通过合并来自多个来源的数据(主要包括 Twitter 9.0、约翰霍普金斯大学和美国人口普查局),在县一级检验关系。我们发现,从 Twitter 9.0 提取的与 COVID-19 相关的负面情绪存在溢出效应,实施留在家中的政策或倾向于民主党的县表现出更高水平的观察到的与 COVID-19 相关的负面情绪。这些发现强调了公共卫生政策和政治两极化对社交媒体中表现出的时空公共情绪的影响。学者和政策制定者可以从理解公共政策和政治意识形态如何影响公共情绪中受益,以在 COVID-19 等公共卫生危机期间为其沟通策略和干预设计提供信息并加以改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c689/10649259/dd9e3e522564/ijerph-20-06993-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验