Suppr超能文献

应用影像组学区分肺癌脑转移与乳腺癌脑转移,包括预测表皮生长因子受体和人表皮生长因子受体 2 状态。

Using Radiomics to Differentiate Brain Metastases From Lung Cancer Versus Breast Cancer, Including Predicting Epidermal Growth Factor Receptor and human Epidermal Growth Factor Receptor 2 Status.

机构信息

From the School of Intelligent Medicine, China Medical University.

Department of Oncology, Shengjing Hospital of China Medical University.

出版信息

J Comput Assist Tomogr. 2023;47(6):924-933. doi: 10.1097/RCT.0000000000001499. Epub 2023 Jul 28.

Abstract

OBJECTIVE

We evaluated the feasibility of using multiregional radiomics to identify brain metastasis (BM) originating from lung adenocarcinoma (LA) and breast cancer (BC) and assess the epidermal growth factor receptor (EGFR) mutation and human epidermal growth factor receptor 2 (HER2) status.

METHODS

Our experiment included 160 patients with BM originating from LA (n = 70), BC (n = 67), and other tumor types (n = 23), between November 2017 and December 2021. All patients underwent contrast-enhanced T1- and T2-weighted magnetic resonance imaging (MRI) scans. A total of 1967 quantitative MRI features were calculated from the tumoral active area and peritumoral edema area and selected using least absolute shrinkage and selection operator regression with 5-fold cross-validation. We constructed radiomic signatures (RSs) based on the most predictive features for preoperative assessment of the metastatic origins, EGFR mutation, and HER2 status. Prediction performance of the constructed RSs was evaluated based on the receiver operating characteristic curve analysis.

RESULTS

The developed multiregion RSs generated good area under the receiver operating characteristic curve (AUC) for identifying the LA and BC origin in the training (AUCs, RS-LA vs RS-BC, 0.767 vs 0.898) and validation (AUCs, RS-LA vs RS-BC, 0.778 and 0.843) cohort and for predicting the EGFR and HER2 status in the training (AUCs, RS-EGFR vs RS-HER2, 0.837 vs 0.894) and validation (AUCs, RS-EGFR vs RS-HER2, 0.729 vs 0.784) cohorts.

CONCLUSIONS

Our results revealed associations between brain MRI-based radiomics and their metastatic origins, EGFR mutations, and HER2 status. The developed multiregion combined RSs may be considered noninvasive predictive markers for planning early treatment for BM patients.

摘要

目的

我们评估了多区域放射组学用于识别源自肺腺癌(LA)和乳腺癌(BC)的脑转移(BM)并评估表皮生长因子受体(EGFR)突变和人表皮生长因子受体 2(HER2)状态的可行性。

方法

我们的实验纳入了 2017 年 11 月至 2021 年 12 月间 160 名 BM 源自 LA(n=70)、BC(n=67)和其他肿瘤类型(n=23)的患者。所有患者均接受了对比增强 T1 和 T2 加权磁共振成像(MRI)扫描。从肿瘤活动区和瘤周水肿区计算了 1967 个定量 MRI 特征,并使用 5 倍交叉验证的最小绝对收缩和选择算子回归进行了选择。我们基于对转移起源、EGFR 突变和 HER2 状态的术前评估最具预测性的特征构建了放射组学特征(RS)。基于受试者工作特征曲线分析评估了所构建 RS 的预测性能。

结果

所开发的多区域 RS 用于在训练(AUC,RS-LA 与 RS-BC,0.767 与 0.898)和验证(AUC,RS-LA 与 RS-BC,0.778 和 0.843)队列中识别 LA 和 BC 起源以及在训练(AUC,RS-EGFR 与 RS-HER2,0.837 与 0.894)和验证(AUC,RS-EGFR 与 RS-HER2,0.729 与 0.784)队列中预测 EGFR 和 HER2 状态的表现均较好。

结论

我们的研究结果揭示了脑 MRI 基于放射组学与转移起源、EGFR 突变和 HER2 状态之间的关联。所开发的多区域联合 RS 可能被视为用于计划 BM 患者早期治疗的非侵入性预测标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验