Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
Sci Rep. 2023 Nov 10;13(1):19607. doi: 10.1038/s41598-023-46694-9.
Detection of the physiological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is challenging in the absence of overt clinical signs but remains necessary to understand a full subclinical disease spectrum. In this study, our objective was to use radiomics (from computed tomography images) and blood biomarkers to predict SARS-CoV-2 infection in a nonhuman primate model (NHP) with inapparent clinical disease. To accomplish this aim, we built machine-learning models to predict SARS-CoV-2 infection in a NHP model of subclinical disease using baseline-normalized radiomic and blood sample analyses data from SARS-CoV-2-exposed and control (mock-exposed) crab-eating macaques. We applied a novel adaptation of the minimum redundancy maximum relevance (mRMR) feature-selection technique, called mRMR-permute, for statistically-thresholded and unbiased feature selection. Through performance comparison of eight machine-learning models trained on 14 feature sets, we demonstrated that a logistic regression model trained on the mRMR-permute feature set can predict SARS-CoV-2 infection with very high accuracy. Eighty-nine percent of mRMR-permute selected features had strong and significant class effects. Through this work, we identified a key set of radiomic and blood biomarkers that can be used to predict infection status even in the absence of clinical signs. Furthermore, we proposed and demonstrated the utility of a novel feature-selection technique called mRMR-permute. This work lays the foundation for the prediction and classification of SARS-CoV-2 disease severity.
在没有明显临床症状的情况下,检测严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)感染的生理反应具有挑战性,但仍有必要了解完整的亚临床疾病谱。在这项研究中,我们的目的是使用放射组学(来自计算机断层扫描图像)和血液生物标志物来预测无明显临床疾病的非人灵长类动物模型(NHP)中的 SARS-CoV-2 感染。为了实现这一目标,我们构建了机器学习模型,使用 SARS-CoV-2 暴露和对照(模拟暴露)食蟹猴的基线归一化放射组学和血液样本分析数据,来预测亚临床疾病的 NHP 模型中的 SARS-CoV-2 感染。我们应用了一种称为 mRMR-permute 的最小冗余最大相关性(mRMR)特征选择技术的新改编版,用于统计阈值和无偏特征选择。通过在 14 个特征集上训练的八个机器学习模型的性能比较,我们证明了基于 mRMR-permute 特征集训练的逻辑回归模型可以非常准确地预测 SARS-CoV-2 感染。mRMR-permute 选择的特征中有 89%具有很强且显著的类别效应。通过这项工作,我们确定了一组关键的放射组学和血液生物标志物,即使在没有临床症状的情况下,也可以用于预测感染状态。此外,我们提出并证明了一种称为 mRMR-permute 的新特征选择技术的实用性。这项工作为 SARS-CoV-2 疾病严重程度的预测和分类奠定了基础。