Suppr超能文献

从肝细胞癌组织内和组织间谷氨酰胺代谢异质性研究中鉴定一种预后评估指标。

Identification of a prognostic evaluator from glutamine metabolic heterogeneity studies within and between tissues in hepatocellular carcinoma.

作者信息

Bao Jie, Yu Yan

机构信息

Digestive System Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Front Pharmacol. 2023 Oct 26;14:1241677. doi: 10.3389/fphar.2023.1241677. eCollection 2023.

Abstract

The liver is the major metabolic organ of the human body, and abnormal metabolism is the main factor influencing hepatocellular carcinoma (HCC). This study was designed to determine the effect of glutamine metabolism on HCC heterogeneity and to develop a prognostic evaluator based on the heterogeneity study of glutamine metabolism within HCC tumors and between tissues. Single-cell transcriptome data were extracted from the GSE149614 dataset and processed using the Seurat package in R for quality control of these data. HCC subtypes in the Cancer Genome Atlas and the GSE14520 dataset were identified via consensus clustering based on glutamine family amino acid metabolism (GFAAM) process genes. The machine learning algorithms gradient boosting machine, support vector machine, random forest, eXtreme gradient boosting, decision trees, and least absolute shrinkage and selection operator were utilized to develop the prognosis model of differentially expressed genes among the molecular gene subtypes. The samples in the GSE149614 dataset included 10 cell types, and there was no significant difference in the GFAAM pathway. HCC was classified into three molecular subtypes according to GFAAM process genes, showing molecular heterogeneity in prognosis, clinicopathological features, and immune cell infiltration. C1 showed the worst survival rate and the highest immune score and immune cell infiltration. A six-gene model for prognostic and immunotherapy responses was constructed among subtypes, and the calculated high-risk score was significantly correlated with poor prognosis, high immune abundance, and a low response rate of immunotherapy in HCC. Our discovery of GFAAM-associated marker genes may help to further decipher the role in HCC occurrence and progression. In particular, this six-gene prognostic model may serve as a predictor of treatment and prognosis in HCC patients.

摘要

肝脏是人体主要的代谢器官,代谢异常是影响肝细胞癌(HCC)的主要因素。本研究旨在确定谷氨酰胺代谢对HCC异质性的影响,并基于HCC肿瘤内和组织间谷氨酰胺代谢的异质性研究开发一种预后评估指标。从GSE149614数据集中提取单细胞转录组数据,并使用R语言中的Seurat软件包对这些数据进行处理以进行质量控制。基于谷氨酰胺家族氨基酸代谢(GFAAM)过程基因,通过一致性聚类确定癌症基因组图谱和GSE14520数据集中的HCC亚型。利用梯度提升机、支持向量机、随机森林、极端梯度提升、决策树以及最小绝对收缩和选择算子等机器学习算法,开发分子基因亚型之间差异表达基因的预后模型。GSE149614数据集中的样本包括10种细胞类型,GFAAM途径无显著差异。根据GFAAM过程基因将HCC分为三种分子亚型,在预后、临床病理特征和免疫细胞浸润方面表现出分子异质性。C1显示出最差的生存率、最高的免疫评分和免疫细胞浸润。在各亚型之间构建了一个用于预后和免疫治疗反应的六基因模型,计算出的高风险评分与HCC患者的预后不良、高免疫丰度和低免疫治疗反应率显著相关。我们对与GFAAM相关的标记基因的发现可能有助于进一步解读其在HCC发生和进展中的作用。特别是,这个六基因预后模型可作为HCC患者治疗和预后的预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e7/10637396/1ab80be32084/fphar-14-1241677-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验