Schulz Frank, Litzius Kai, Powalla Lukas, Birch Max T, Gallardo Rodolfo A, Satheesh Sayooj, Weigand Markus, Scholz Tanja, Lotsch Bettina V, Schütz Gisela, Burghard Marko, Wintz Sebastian
Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany.
Universität Augsburg, D-86159 Augsburg, Germany.
Nano Lett. 2023 Nov 22;23(22):10126-10131. doi: 10.1021/acs.nanolett.3c02212. Epub 2023 Nov 13.
Magnetism in reduced dimensionalities is of great fundamental interest while also providing perspectives for applications of materials with novel functionalities. In particular, spin dynamics in two dimensions (2D) have become a focus of recent research. Here, we report the observation of coherent propagating spin-wave dynamics in a ∼30 nm thick flake of 2D van der Waals ferromagnet FeGeTe using X-ray microscopy. Both phase and amplitude information were obtained by direct imaging below for frequencies from 2.77 to 3.84 GHz, and the corresponding spin-wave wavelengths were measured to be between 1.5 and 0.5 μm. Thus, parts of the magnonic dispersion relation were determined despite a relatively high magnetic damping of the material. Numerically solving an analytic multilayer model allowed us to corroborate the experimental dispersion relation and predict the influence of changes in the saturation magnetization or interlayer coupling, which could be exploited in future applications by temperature control or stacking of 2D-heterostructures.
低维磁性具有重大的基础研究意义,同时也为具有新颖功能的材料应用提供了思路。特别是二维(2D)中的自旋动力学已成为近期研究的焦点。在此,我们报告使用X射线显微镜在约30nm厚的二维范德华铁磁体FeGeTe薄片中观察到相干传播的自旋波动力学。通过在2.77至3.84GHz频率下低于 的直接成像获得了相位和幅度信息,并且测量到相应的自旋波波长在1.5至0.5μm之间。因此,尽管该材料具有相对较高的磁阻尼,但仍确定了部分磁振子色散关系。通过数值求解解析多层模型,我们能够证实实验色散关系并预测饱和磁化强度或层间耦合变化的影响,未来可通过温度控制或二维异质结构堆叠在应用中加以利用。