Suppr超能文献

基于约束密度泛函理论的磁性合金机器学习磁势:以铁铝为例

Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of Fe-Al.

作者信息

Kotykhov Alexey S, Gubaev Konstantin, Hodapp Max, Tantardini Christian, Shapeev Alexander V, Novikov Ivan S

机构信息

Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, Moscow, 143026, Russian Federation.

Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russian Federation.

出版信息

Sci Rep. 2023 Nov 13;13(1):19728. doi: 10.1038/s41598-023-46951-x.

Abstract

We propose a machine-learning interatomic potential for multi-component magnetic materials. In this potential we consider magnetic moments as degrees of freedom (features) along with atomic positions, atomic types, and lattice vectors. We create a training set with constrained DFT (cDFT) that allows us to calculate energies of configurations with non-equilibrium (excited) magnetic moments and, thus, it is possible to construct the training set in a wide configuration space with great variety of non-equilibrium atomic positions, magnetic moments, and lattice vectors. Such a training set makes possible to fit reliable potentials that will allow us to predict properties of configurations in the excited states (including the ones with non-equilibrium magnetic moments). We verify the trained potentials on the system of bcc Fe-Al with different concentrations of Al and Fe and different ways Al and Fe atoms occupy the supercell sites. Here, we show that the formation energies, the equilibrium lattice parameters, and the total magnetic moments of the unit cell for different Fe-Al structures calculated with machine-learning potentials are in good correspondence with the ones obtained with DFT. We also demonstrate that the theoretical calculations conducted in this study qualitatively reproduce the experimentally-observed anomalous volume-composition dependence in the Fe-Al system.

摘要

我们提出了一种用于多组分磁性材料的机器学习原子间势。在这种势中,我们将磁矩与原子位置、原子类型和晶格矢量一起视为自由度(特征)。我们使用约束密度泛函理论(cDFT)创建了一个训练集,这使我们能够计算具有非平衡(激发)磁矩的构型的能量,因此,有可能在具有各种非平衡原子位置、磁矩和晶格矢量的宽构型空间中构建训练集。这样的训练集使得拟合可靠的势成为可能,这将使我们能够预测激发态(包括具有非平衡磁矩的态)构型的性质。我们在具有不同Al和Fe浓度以及Al和Fe原子占据超胞位点的不同方式的体心立方Fe-Al系统上验证了训练好的势。在这里,我们表明,用机器学习势计算得到的不同Fe-Al结构的形成能、平衡晶格参数和晶胞总磁矩与用密度泛函理论得到的结果吻合良好。我们还证明,本研究中进行的理论计算定性地再现了Fe-Al系统中实验观察到的反常体积-成分依赖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3f8/10643701/4e9c0ceb1bef/41598_2023_46951_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验