Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.
Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands.
Behav Res Methods. 2024 Apr;56(4):2977-2991. doi: 10.3758/s13428-023-02244-9. Epub 2023 Nov 13.
When two cognitive processes contribute to a behavioral output-each process producing a specific distribution of the behavioral variable of interest-and when the mixture proportion of these two processes varies as a function of an experimental condition, a common density point should be present in the observed distributions of the data across said conditions. In principle, one can statistically test for the presence (or absence) of a fixed point in experimental data to provide evidence in favor of (or against) the presence of a mixture of processes, whose proportions are affected by an experimental manipulation. In this paper, we provide an empirical diagnostic of this test to detect a mixture of processes. We do so using resampling of real experimental data under different scenarios, which mimic variations in the experimental design suspected to affect the sensitivity and specificity of the fixed-point test (i.e., mixture proportion, time on task, and sample size). Resampling such scenarios with real data allows us to preserve important features of data which are typically observed in real experiments while maintaining tight control over the properties of the resampled scenarios. This is of particular relevance considering such stringent assumptions underlying the fixed-point test. With this paper, we ultimately aim at validating the fixed-point property of binary mixture data and at providing some performance metrics to researchers aiming at testing the fixed-point property on their experimental data.
当两个认知过程共同作用于行为输出时——每个过程都产生感兴趣的行为变量的特定分布——并且这两个过程的混合比例随着实验条件的变化而变化时,在观察到的数据分布中,在这些条件下应该存在一个共同的密度点。原则上,可以通过统计方法检验实验数据中是否存在(或不存在)固定点,以提供支持(或反对)存在混合过程的证据,这些过程的比例受到实验操作的影响。在本文中,我们提供了一种对该测试的实证诊断,以检测过程的混合。我们通过在不同场景下对真实实验数据进行重采样来实现这一点,这些场景模拟了可能影响固定点测试的灵敏度和特异性的实验设计变化(即混合比例、任务时间和样本大小)。使用真实数据对这些场景进行重采样,可以在保持对重采样场景属性的严格控制的同时,保留真实实验中通常观察到的数据的重要特征。考虑到固定点测试的这些严格假设,这一点尤其重要。通过本文,我们最终旨在验证二元混合数据的固定点特性,并为旨在在其实验数据上测试固定点特性的研究人员提供一些性能指标。