Patrick Matthew J, Eckstein James K, Lopez Javier R, Toderas Silvia, Asher Sarah A, Whang Sylvia I, Levine Stacey, Rickman Jeffrey M, Barmak Katayun
Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd Building, 500 W. 120 Street, New York, NY 10027, USA.
Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, IL 61801, USA.
Microsc Microanal. 2023 Dec 21;29(6):1968-1979. doi: 10.1093/micmic/ozad115.
Quantification of microstructures is crucial for understanding processing-structure and structure-property relationships in polycrystalline materials. Delineating grain boundaries in bright-field transmission electron micrographs, however, is challenging due to complex diffraction contrast in images. Conventional edge detection algorithms are inadequate; instead, manual tracing is usually required. This study demonstrates the first successful machine learning approach for grain boundary detection in bright-field transmission electron micrographs. The proposed methodology uses a U-Net convolutional neural network trained on carefully constructed data from bright-field images and hand tracings available from prior studies, combined with targeted postprocessing algorithms to preserve fine features of interest. The image processing pipeline accurately estimates grain boundary positions, avoiding segmentation in regions with intragrain contrast and identifying low-contrast boundaries. Our approach is validated by directly comparing microstructural markers (i.e., grain centroids) identified in U-Net predictions with those identified in hand tracings; furthermore, the grain size distributions obtained from the two techniques show notable overlap when compared using t-test, Kolmogorov-Smirnov test, and Cramér-von Mises test. The technique is then successfully applied to interpret new microstructures having different image characteristics from the training data, with preliminary results from platinum and palladium microstructures presented, highlighting the versatility of our approach for grain boundary identification in bright-field micrographs.
对多晶材料中的微观结构进行量化,对于理解其加工-结构以及结构-性能关系至关重要。然而,由于明场透射电子显微镜图像中存在复杂的衍射衬度,在这些图像中描绘晶界具有挑战性。传统的边缘检测算法并不适用;相反,通常需要手动追踪。本研究展示了用于明场透射电子显微镜图像中晶界检测的首个成功的机器学习方法。所提出的方法使用了一个U-Net卷积神经网络,该网络基于从明场图像和先前研究中可得的手动追踪构建的精心数据进行训练,并结合有针对性的后处理算法来保留感兴趣的精细特征。图像处理管道能够准确估计晶界位置,避免在具有晶粒内衬度的区域进行分割,并识别低衬度边界。我们的方法通过直接比较在U-Net预测中识别出的微观结构标记(即晶粒质心)与在手动追踪中识别出的标记进行了验证;此外,当使用t检验、柯尔莫哥洛夫-斯米尔诺夫检验和克莱默-冯·米塞斯检验进行比较时,从这两种技术获得的晶粒尺寸分布显示出显著的重叠。然后,该技术成功应用于解释具有与训练数据不同图像特征的新微观结构,并展示了铂和钯微观结构的初步结果,突出了我们的方法在明场显微照片中进行晶界识别的通用性。