Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.
Nature. 2023 Nov;623(7987):502-508. doi: 10.1038/s41586-023-06645-w. Epub 2023 Nov 15.
The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space. Ultracold temperatures amplify quantum effects, whereas free fall allows further cooling and longer interactions time with gravity-the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensates (BECs), superfluidity, and strongly interacting quantum gases. Terrestrial quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the universality of free fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10 level. In space, cooling the elements needed to explore the rich physics of strong interactions or perform quantum tests of the UFF has remained elusive. Here, using upgraded hardware of the multiuser Cold Atom Lab (CAL) instrument aboard the International Space Station (ISS), we report, to our knowledge, the first simultaneous production of a dual-species BEC in space (formed from Rb and K), observation of interspecies interactions, as well as the production of K ultracold gases. Operating a single laser at a 'magic wavelength' at which Rabi rates of simultaneously applied Bragg pulses are equal, we have further achieved the first spaceborne demonstration of simultaneous atom interferometry with two atomic species (Rb and K). These results are an important step towards quantum tests of UFF in space and will allow scientists to investigate aspects of few-body physics, quantum chemistry and fundamental physics in new regimes without the perturbing asymmetry of gravity.
最近,在紧凑仪器中将原子冷却到极低温的能力已经扩展到了太空。极低温可以放大量子效应,而自由落体则可以进一步冷却并延长与重力的相互作用时间——这是一种没有量子描述的最终力。在地球上,这些设备已经产生了宏观量子现象,如玻色-爱因斯坦凝聚体(BEC)、超流性和强相互作用的量子气体。在地球上,干涉两个超冷原子同位素叠加的量子传感器已经在 10 级精度上测试了自由落体的普遍性(UFF),这是爱因斯坦经典引力理论的核心原则之一。在太空中,冷却探索强相互作用丰富物理或进行 UFF 量子测试所需的元素仍然难以实现。在这里,我们使用国际空间站(ISS)上多用户冷原子实验室(CAL)仪器的升级硬件,报告了我们所知的首次在太空同时产生双原子物种 BEC(由 Rb 和 K 组成)、观察到种间相互作用以及产生 K 超冷气体的情况。我们使用单个激光在“魔术波长”下工作,同时施加的布拉格脉冲的拉比率相等,进一步实现了两种原子(Rb 和 K)的空间原子干涉的首次同时演示。这些结果是在太空中进行 UFF 量子测试的重要一步,将使科学家能够在没有重力干扰不对称性的新环境中研究少体物理、量子化学和基础物理的各个方面。