Li Yingwei, Stec Grant J, Thorarinsdottir Agnes E, McGillicuddy Ryan D, Zheng Shao-Liang, Mason Jarad A
Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
Chem Sci. 2023 Oct 24;14(43):12283-12291. doi: 10.1039/d3sc04085b. eCollection 2023 Nov 8.
Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO to CO (FE) and provide useful model systems for studying the metal-catalysed CO reduction reaction (CORR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AuAg(C[triple bond, length as m-dash]CR)Cl(PPh), AuAg(C[triple bond, length as m-dash]CR)Cl, and Au(C[triple bond, length as m-dash]CR)/AuAg(C[triple bond, length as m-dash]CR)] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CORR activity and selectivity. We develop a simple method to determine the number of CO-accessible sites for a given NC then use this to probe relationships between surface accessibility and CORR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au(C[triple bond, length as m-dash]CR) and AuAg(C[triple bond, length as m-dash]CR)] feature a FE of >90% at -0.57 V the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FE. In addition, CORR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FE and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.
原子精确的纳米团簇(NCs)可以被设计用于将CO电化学还原为CO,具有高法拉第效率(FE),并为研究金属催化的CO还原反应(CORR)提供有用的模型体系。虽然通常会提到尺寸依赖性趋势,但NC尺寸对催化活性的影响常常被其他因素所混淆,如表面结构、配体密度和电子结构的变化,这使得建立严格的结构-性质关系具有挑战性。在此,我们报告了对一系列尺寸和核心结构相似但配体堆积密度不同的NCs [AuAg(C≡CR)Cl(PPh)、AuAg(C≡CR)Cl和Au(C≡CR)/AuAg(C≡CR)] 的详细研究,以探究可及金属位点的数量如何影响CORR活性和选择性。我们开发了一种简单的方法来确定给定NC的CO可及位点数量,然后用此来探究原子精确的NC催化剂的表面可及性与CORR性能之间的关系。具体而言,可及金属位点数量最多的NCs [Au(C≡CR)和AuAg(C≡CR)] 在相对于可逆氢电极(RHE)为-0.57 V时的FE > 90%,而可及金属位点数量较少的NCs的FE则降低。此外,对其他跨越更广泛尺寸范围的金炔基NCs进行的CORR研究进一步支持了FE与可及金属位点数量之间的关系,而与NC尺寸无关。这项工作建立了一种可推广的方法来评估原子精确的NCs用于电催化的潜力。