Suppr超能文献

SARS-CoV-2 ORF6 蛋白靶向 TRIM25 进行蛋白酶体降解,以减少 K63 连接的 RIG-I 泛素化和 I 型干扰素的诱导。

SARS-CoV-2 ORF6 protein targets TRIM25 for proteasomal degradation to diminish K63-linked RIG-I ubiquitination and type-I interferon induction.

机构信息

Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.

Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India.

出版信息

Cell Mol Life Sci. 2023 Nov 20;80(12):364. doi: 10.1007/s00018-023-05011-3.

Abstract

Evasion and antagonism of host cellular immunity upon SARS-CoV-2 infection provide replication advantage to the virus and contribute to COVID-19 pathogenesis. We explored the ability of different SARS-CoV-2 proteins to antagonize the host's innate immune system and found that the ORF6 protein mitigated type-I Interferon (IFN) induction and downstream IFN signaling. Our findings also corroborated previous reports that ORF6 blocks the nuclear import of IRF3 and STAT1 to inhibit IFN induction and signaling. Here we show that ORF6 directly interacts with RIG-I and blocks downstream type-I IFN induction and signaling by reducing the levels of K63-linked ubiquitinated RIG-I. This involves ORF6-mediated targeting of E3 ligase TRIM25 for proteasomal degradation, which was also observed during SARS-CoV-2 infection. The type-I IFN antagonistic activity of ORF6 was mapped to its C-terminal cytoplasmic tail, specifically to amino acid residues 52-61. Overall, we provide new insights into how SARS-CoV-2 inhibits type-I IFN induction and signaling through distinct actions of the viral ORF6 protein.

摘要

SARS-CoV-2 感染逃避和拮抗宿主细胞免疫为病毒提供了复制优势,并导致 COVID-19 发病机制。我们探索了不同的 SARS-CoV-2 蛋白拮抗宿主固有免疫系统的能力,发现 ORF6 蛋白减轻了 I 型干扰素(IFN)的诱导和下游 IFN 信号转导。我们的研究结果还证实了先前的报道,即 ORF6 阻断 IRF3 和 STAT1 的核输入,以抑制 IFN 的诱导和信号转导。在这里,我们表明 ORF6 直接与 RIG-I 相互作用,并通过降低 K63 连接的泛素化 RIG-I 的水平来阻断下游的 I 型 IFN 诱导和信号转导。这涉及 ORF6 介导的 E3 连接酶 TRIM25 的靶向作用,使其发生蛋白酶体降解,这在 SARS-CoV-2 感染期间也观察到。ORF6 的 I 型 IFN 拮抗活性被映射到其 C 末端细胞质尾部,特别是到氨基酸残基 52-61。总的来说,我们提供了新的见解,说明 SARS-CoV-2 如何通过病毒 ORF6 蛋白的不同作用来抑制 I 型 IFN 的诱导和信号转导。

相似文献

5
7
Human metapneumovirus M2-2 protein inhibits RIG-I signaling by preventing TRIM25-mediated RIG-I ubiquitination.
Front Immunol. 2022 Aug 15;13:970750. doi: 10.3389/fimmu.2022.970750. eCollection 2022.

引用本文的文献

1
The Function of TRIM25 in Antiviral Defense and Viral Immune Evasion.
Viruses. 2025 May 20;17(5):735. doi: 10.3390/v17050735.
3
Anti-interferon armamentarium of human coronaviruses.
Cell Mol Life Sci. 2025 Mar 13;82(1):116. doi: 10.1007/s00018-025-05605-z.
4
A comprehensive review of current insights into the virulence factors of SARS-CoV-2.
J Virol. 2025 Feb 25;99(2):e0204924. doi: 10.1128/jvi.02049-24. Epub 2025 Jan 29.
6
Bat RNA viruses employ viral RHIMs orchestrating species-specific cell death programs linked to Z-RNA sensing and ZBP1-RIPK3 signaling.
iScience. 2024 Nov 20;27(12):111444. doi: 10.1016/j.isci.2024.111444. eCollection 2024 Dec 20.
7
Unraveling the protective genetic architecture of COVID-19 in the Brazilian Amazon.
Sci Rep. 2024 Nov 9;14(1):27332. doi: 10.1038/s41598-024-78170-3.
8
The E3 ligase ASB3 downregulates antiviral innate immunity by targeting MAVS for ubiquitin-proteasomal degradation.
Cell Death Differ. 2024 Dec;31(12):1746-1760. doi: 10.1038/s41418-024-01376-5. Epub 2024 Sep 12.
9
Exploring TRIM proteins' role in antiviral defense against influenza A virus and respiratory coronaviruses.
Front Cell Infect Microbiol. 2024 Jul 15;14:1420854. doi: 10.3389/fcimb.2024.1420854. eCollection 2024.

本文引用的文献

1
Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis.
Cell Host Microbe. 2023 Oct 11;31(10):1668-1684.e12. doi: 10.1016/j.chom.2023.08.003. Epub 2023 Sep 21.
2
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Membrane (M) and Spike (S) Proteins Antagonize Host Type I Interferon Response.
Front Cell Infect Microbiol. 2021 Dec 7;11:766922. doi: 10.3389/fcimb.2021.766922. eCollection 2021.
3
4
Innate Immunity Evasion Strategies of Highly Pathogenic Coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2.
Front Microbiol. 2021 Oct 29;12:770656. doi: 10.3389/fmicb.2021.770656. eCollection 2021.
5
A dual-role of SARS-CoV-2 nucleocapsid protein in regulating innate immune response.
Signal Transduct Target Ther. 2021 Sep 1;6(1):331. doi: 10.1038/s41392-021-00742-w.
6
Immune evasion of SARS-CoV-2 from interferon antiviral system.
Comput Struct Biotechnol J. 2021;19:4217-4225. doi: 10.1016/j.csbj.2021.07.023. Epub 2021 Jul 26.
8
SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms.
PLoS One. 2021 Jun 24;16(6):e0253089. doi: 10.1371/journal.pone.0253089. eCollection 2021.
9
SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation.
EMBO J. 2021 Aug 2;40(15):e107826. doi: 10.15252/embj.2021107826. Epub 2021 Jul 2.
10
Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein.
Proc Natl Acad Sci U S A. 2021 Jun 15;118(24). doi: 10.1073/pnas.2101161118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验