Google Research, Mountain View, CA, USA.
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Nat Methods. 2023 Dec;20(12):2011-2020. doi: 10.1038/s41592-023-02059-8. Epub 2023 Nov 20.
Maps of the nervous system that identify individual cells along with their type, subcellular components and connectivity have the potential to elucidate fundamental organizational principles of neural circuits. Nanometer-resolution imaging of brain tissue provides the necessary raw data, but inferring cellular and subcellular annotation layers is challenging. We present segmentation-guided contrastive learning of representations (SegCLR), a self-supervised machine learning technique that produces representations of cells directly from 3D imagery and segmentations. When applied to volumes of human and mouse cortex, SegCLR enables accurate classification of cellular subcompartments and achieves performance equivalent to a supervised approach while requiring 400-fold fewer labeled examples. SegCLR also enables inference of cell types from fragments as small as 10 μm, which enhances the utility of volumes in which many neurites are truncated at boundaries. Finally, SegCLR enables exploration of layer 5 pyramidal cell subtypes and automated large-scale analysis of synaptic partners in mouse visual cortex.
能够识别单个细胞及其类型、亚细胞成分和连接性的神经系统图谱,有可能阐明神经回路的基本组织原则。纳米分辨率的脑组织成像提供了必要的原始数据,但推断细胞和亚细胞注释层是具有挑战性的。我们提出了基于分割的对比学习表示法(SegCLR),这是一种自监督机器学习技术,可直接从 3D 图像和分割中生成细胞的表示。当应用于人类和小鼠皮层的体积时,SegCLR 能够准确分类细胞的亚区,并实现与监督方法相当的性能,同时仅需要 400 倍的标记示例。SegCLR 还能够从小至 10μm 的片段推断细胞类型,这增强了在边界处截断许多神经突的体积的实用性。最后,SegCLR 能够探索 5 层锥体细胞亚型,并自动分析小鼠视觉皮层中的突触伙伴。