Suppr超能文献

用于超长循环无枝晶全固态锂金属电池的锂离子传输精确剪裁

Precise Tailoring of Lithium-Ion Transport for Ultralong-Cycling Dendrite-Free All-Solid-State Lithium Metal Batteries.

作者信息

Li Weihan, Quirk James A, Li Minsi, Xia Wei, Morgan Lucy M, Yin Wen, Zheng Matthew, Gallington Leighanne C, Ren Yang, Zhu Ning, King Graham, Feng Renfei, Li Ruying, Dawson James A, Sham Tsun-Kong, Sun Xueliang

机构信息

Department of Mechanical and Materials Engineering, Western University, London, ON, N6A 5B9, Canada.

Department of Chemistry and Soochow-Western Centre for Synchrotron Radiation Research, Western University, London, ON, N6A 5B7, Canada.

出版信息

Adv Mater. 2024 Mar;36(13):e2302647. doi: 10.1002/adma.202302647. Epub 2023 Dec 29.

Abstract

All-solid-state lithium metal batteries can address crucial challenges regarding insufficient battery cycling life and energy density. The demonstration of long-cycling dendrite-free all-solid-state lithium metal batteries requires precise tailoring of lithium-ion transport of solid-state electrolytes (SSEs). In this work, a proof of concept is reported for precise tailoring of lithium-ion transport of a halide SSE, LiInCl, including intragranular (within grains) but also intergranular (between grains) lithium-ion transport. Lithium-ion migration tailoring mechanism in crystals is developed by unexpected enhanced Li, In, and Cl vacancy populations and lower energy barrier for hopping. The lithium-ion transport tailoring mechanism between the grains is determined by the elimination of voids between grains and the formation of unexpected supersonic conducting grain boundaries, boosting the lithium dendrite suppression ability of SSE. Due to boosted lithium-ion conduction and dendrite-suppression ability, the all-solid-state lithium metal batteries coupled with Ni-rich LiNiCoMnO cathodes and lithium metal anodes demonstrate breakthroughs in electrochemical performance by achieving extremely long cycling life at a high current density of 0.5 C (2000 cycles, 93.7% capacity retention). This concept of precise tailoring of lithium-ion transport provides a cost, time, and energy efficient solution to conquer the remaining challenges in all-solid-state lithium-metal batteries for fast developing electric vehicle markets.

摘要

全固态锂金属电池可以解决电池循环寿命和能量密度不足的关键挑战。长循环无枝晶全固态锂金属电池的示范需要精确调整固态电解质(SSE)的锂离子传输。在这项工作中,报道了一种概念验证,用于精确调整卤化物SSE(LiInCl)的锂离子传输,包括晶内(晶粒内部)和晶间(晶粒之间)的锂离子传输。晶体中的锂离子迁移调控机制是通过意外增加的Li、In和Cl空位数量以及更低的跳跃能垒来实现的。晶粒间锂离子传输的调控机制是由消除晶粒间的空隙和形成意外的超音速导电晶界决定的,从而提高了SSE抑制锂枝晶的能力。由于锂离子传导和枝晶抑制能力的提高,与富镍LiNiCoMnO阴极和锂金属阳极耦合的全固态锂金属电池在电化学性能上取得了突破,在0.5 C的高电流密度下实现了极长的循环寿命(2000次循环,容量保持率93.7%)。这种精确调整锂离子传输的概念为快速发展的电动汽车市场克服全固态锂金属电池中剩余的挑战提供了一种成本、时间和能源高效的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验