Janssen Res. & Dev. (Johnson & Johnson), Spring House, PA, USA.
Sci Rep. 2023 Nov 23;13(1):20603. doi: 10.1038/s41598-023-47555-1.
Large-scale longitudinal biobank data can be leveraged to identify genetic variation contributing to human diseases progression and traits trajectories. While methods for genome-wide association studies (GWAS) of multiple correlated traits have been proposed, an efficient multiple-trait approach to model longitudinal phenotypes is not currently available. We developed GAMUT, a genome-wide association approach for multiple longitudinal traits. GAMUT employs a mixed-effects model to fit longitudinal outcomes where a fast algorithm for inversion by recursive partitioning of the random effects submatrix is introduced. To evaluate performance of the algorithms introduced and assess their statistical power and type I error, stochastic simulation was conducted. Consistent with our expectation, power was greater for cross-sectional (CS) than longitudinal (LT) effects, particularly with a diminishing LT/CS ratio. With a minimum minor allele count of 3 within genotype by time categories, observed type I error was roughly equal to theoretical genome-wide significance. Additionally, 28 blood-based biomarkers measured at 2 time points on participants of the UK Biobank were used to compare GAMUT against single-trait standard and longitudinal GWAS (including rate of change). Across all biomarkers, we observed 539 (CS) and 248 (LT) significant independent variants for the GAMUT method, and 513 (CS) and 30 (LT) for single-trait longitudinal GWAS, respectively. Only 37 variants were identified by modeling rates of change using standard GWAS.
大规模纵向生物库数据可用于鉴定导致人类疾病进展和特征轨迹的遗传变异。虽然已经提出了用于多种相关特征的全基因组关联研究(GWAS)的方法,但目前尚无用于模拟纵向表型的有效的多特征方法。我们开发了 GAMUT,这是一种用于多个纵向特征的全基因组关联方法。GAMUT 使用混合效应模型来拟合纵向结果,其中引入了一种通过随机效应子矩阵递归划分进行快速逆运算的算法。为了评估所提出算法的性能并评估其统计功效和 I 型错误率,进行了随机模拟。与我们的预期一致,横向(CS)效应比纵向(LT)效应的功效更高,尤其是 LT/CS 比率逐渐降低时。在每个基因型的时间类别中,最小次要等位基因计数为 3,观察到的 I 型错误率大致等于理论全基因组显着性。此外,还使用英国生物库参与者的 2 个时间点测量的 28 个基于血液的生物标志物来比较 GAMUT 与单特征标准和纵向 GWAS(包括变化率)。在所有生物标志物中,我们观察到 GAMUT 方法有 539 个(CS)和 248 个(LT)显著独立变异,而单特征纵向 GWAS 分别有 513 个(CS)和 30 个(LT)。仅使用标准 GWAS 对变化率进行建模,就鉴定出 37 个变异。