Cai Na, Zhang Xin, Hu Yong, Liu Yan
College of Sciences, Northeastern University, Shenyang 110819, China.
Nanomaterials (Basel). 2023 Nov 20;13(22):2977. doi: 10.3390/nano13222977.
Magnetic skyrmions are considered promising candidates for use as information carriers in future spintronic devices. To achieve the development of skyrmion-based spintronic devices, a reasonable and feasible nanotrack is essential. In this paper, we conducted a study on the current-driven skyrmion movement in a circular-ring-shaped nanotrack. Our results suggest that the asymmetry of the inside and outside boundary of the circular ring changed the stable position of the skyrmion, causing it to move like the skyrmion Hall effect when driven by currents. Moreover, the asymmetric boundaries have advantages in enhancing or weakening the skyrmion Hall effect. Additionally, we also compared the skyrmion Hall effect from the asymmetric boundary of circular-ring nanotracks with that from the inhomogeneous Dzyaloshinskii-Moriya interaction. It was found that the skyrmion Hall effect in the circular ring is significantly greater than that caused by the inhomogeneous Dzyaloshinskii-Moriya interaction. These results contribute to our understanding of the skyrmion dynamics in confined geometries and offer an alternative method for controlling the skyrmion Hall effect of skyrmion-based devices.
磁斯格明子被认为是未来自旋电子器件中用作信息载体的有前途的候选者。为了实现基于斯格明子的自旋电子器件的发展,一条合理且可行的纳米轨道至关重要。在本文中,我们对环形纳米轨道中电流驱动的斯格明子运动进行了研究。我们的结果表明,圆环内外边界的不对称性改变了斯格明子的稳定位置,使其在电流驱动下像斯格明子霍尔效应那样移动。此外,不对称边界在增强或减弱斯格明子霍尔效应方面具有优势。另外,我们还比较了环形纳米轨道不对称边界的斯格明子霍尔效应与非均匀Dzyaloshinskii-Moriya相互作用产生的斯格明子霍尔效应。结果发现,圆环中的斯格明子霍尔效应明显大于非均匀Dzyaloshinskii-Moriya相互作用所引起的效应。这些结果有助于我们理解受限几何结构中的斯格明子动力学,并为控制基于斯格明子的器件的斯格明子霍尔效应提供了一种替代方法。