Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA.
Immunol Invest. 2024 Feb;53(2):210-223. doi: 10.1080/08820139.2023.2284369. Epub 2023 Nov 24.
The immune system has evolved to detect foreign antigens and deliver coordinated responses, while minimizing "friendly fire." Until recently, studies investigating the behavior of immune cells were limited to static measurements. Although static measurements allow for real-time imaging, results are often difficult to translate to an setting. Multiphoton microscopy is an emerging method to capture spatial information on subcellular events and characterize the local microenvironment. Previous studies have shown that multiphoton microscopy can monitor changes in single-cell macrophage heterogeneity during differentiation. Therefore, there is a need to use multiphoton microscopy to monitor molecular interactions during immunological activities like phagocytosis. Here we investigate the correlation between phagocytic function and changes in endogenous optical reporters during phagocytosis.
autofluorescence imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) was used to detect metabolic changes in macrophages during phagocytosis. More specifically, optical redox ratio, mean NADH fluorescence lifetime and ratio of free to protein-bound NADH were used to quantify changes in metabolism.
Results show that IFN- (M1) macrophages showed decreased optical redox ratios and mean NADH lifetime while phagocytosing immunogenic cancer cells compared to metastatic cells. To validate phagocytic function, a fluorescence microscopy-based protocol using a pH-sensitive fluorescent probe was used. Results indicate that M0 and M1 macrophages show similar trends in phagocytic potential.
Overall, this work demonstrates that multiphoton imaging can be used to longitudinally track changes in phagocytosis and endogenous metabolic cofactors.
免疫系统经过进化,能够识别外来抗原并做出协调一致的反应,同时将“友军误伤”的可能性降到最低。直到最近,研究免疫细胞行为的研究还局限于静态测量。虽然静态测量可以进行实时成像,但结果往往难以转化到实际环境中。双光子显微镜是一种新兴的方法,可以捕捉亚细胞事件的空间信息并描述局部微环境。先前的研究表明,双光子显微镜可以监测单细胞巨噬细胞在分化过程中异质性的变化。因此,有必要使用双光子显微镜来监测吞噬作用等免疫活动中的分子相互作用。在这里,我们研究了吞噬作用过程中吞噬功能与内源性光学报告分子变化之间的相关性。
使用烟酰胺腺嘌呤二核苷酸(NADH)和黄素腺嘌呤二核苷酸(FAD)的自发荧光成像来检测巨噬细胞在吞噬过程中的代谢变化。更具体地说,使用光学氧化还原比、平均 NADH 荧光寿命和游离 NADH 与蛋白结合 NADH 的比值来量化代谢变化。
结果表明,与转移性细胞相比,IFN-(M1)巨噬细胞在吞噬免疫原性癌细胞时,表现出较低的光学氧化还原比和平均 NADH 荧光寿命。为了验证吞噬功能,我们使用基于荧光显微镜的 pH 敏感荧光探针协议进行了验证。结果表明,M0 和 M1 巨噬细胞在吞噬能力方面表现出相似的趋势。
总的来说,这项工作表明,双光子成像可用于纵向跟踪吞噬作用和内源性代谢辅因子的变化。