Suppr超能文献

基于注意力机制的增强型一维卷积神经网络的高光谱成像物种识别

The Identification of Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism.

作者信息

Hu Huiqiang, Xu Zhenyu, Wei Yunpeng, Wang Tingting, Zhao Yuping, Xu Huaxing, Mao Xiaobo, Huang Luqi

机构信息

School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China.

China Academy of Chinese Medical Sciences, Beijing 100070, China.

出版信息

Foods. 2023 Nov 16;12(22):4153. doi: 10.3390/foods12224153.

Abstract

Combining deep learning and hyperspectral imaging (HSI) has proven to be an effective approach in the quality control of medicinal and edible plants. Nonetheless, hyperspectral data contains redundant information and highly correlated characteristic bands, which can adversely impact sample identification. To address this issue, we proposed an enhanced one-dimensional convolutional neural network (1DCNN) with an attention mechanism. Given an intermediate feature map, two attention modules are constructed along two separate dimensions, channel and spectral, and then combined to enhance relevant features and to suppress irrelevant ones. Validated by datasets, the results demonstrate that an attention-enhanced 1DCNN model outperforms several machine learning algorithms and shows consistent improvements over a vanilla 1DCNN. Notably under VNIR and SWIR lenses, the model obtained 98.97% and 99.35% for binary classification between Fritillariae Cirrhosae Bulbus (FCB) and other non-FCB species, respectively. Additionally, it still achieved an extraordinary accuracy of 97.64% and 98.39% for eight-category classification among species. This study demonstrated the application of HSI with artificial intelligence can serve as a reliable, efficient, and non-destructive quality control method for authenticating species. Moreover, our findings also illustrated the great potential of the attention mechanism in enhancing the performance of the vanilla 1DCNN method, providing reference for other HSI-related quality controls of plants with medicinal and edible uses.

摘要

将深度学习与高光谱成像(HSI)相结合已被证明是药用和食用植物质量控制中的一种有效方法。尽管如此,高光谱数据包含冗余信息和高度相关的特征波段,这可能会对样本识别产生不利影响。为了解决这个问题,我们提出了一种带有注意力机制的增强型一维卷积神经网络(1DCNN)。给定一个中间特征图,沿着通道和光谱两个独立维度构建两个注意力模块,然后将它们组合起来以增强相关特征并抑制无关特征。经数据集验证,结果表明注意力增强的1DCNN模型优于几种机器学习算法,并且相对于普通1DCNN有持续的改进。值得注意的是,在可见近红外(VNIR)和短波红外(SWIR)镜头下,该模型在川贝母(FCB)与其他非FCB物种之间的二分类中分别获得了98.97%和99.35%的准确率。此外,在八种物种的分类中,它仍然分别达到了97.64%和98.39%的超高准确率。本研究表明,将HSI与人工智能相结合可作为一种可靠、高效且无损的物种鉴定质量控制方法。此外,我们的研究结果还说明了注意力机制在增强普通1DCNN方法性能方面的巨大潜力,为其他与HSI相关的药用和食用植物质量控制提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d70/10670081/6eeaf0281085/foods-12-04153-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验